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Abstract: We propose a novel adaptive importance sampling scheme for Bayesian inversion problems
where the inference of the variables of interest and the power of the data noise are carried out using
distinct (but interacting) methods. More specifically, we consider a Bayesian analysis for the variables
of interest (i.e., the parameters of the model to invert), whereas we employ a maximum likelihood
approach for the estimation of the noise power. The whole technique is implemented by means
of an iterative procedure with alternating sampling and optimization steps. Moreover, the noise
power is also used as a tempered parameter for the posterior distribution of the the variables of
interest. Therefore, a sequence of tempered posterior densities is generated, where the tempered
parameter is automatically selected according to the current estimate of the noise power. A complete
Bayesian study over the model parameters and the scale parameter can also be performed. Numerical
experiments show the benefits of the proposed approach.

Keywords: Bayesian inference; importance sampling; MCMC; inversion problems

1. Introduction

The estimation of unknown parameters from noisy observations is an essential prob-
lem in signal processing, statistics, and machine learning [1–3]. Within the Bayesian signal
processing framework, these problems are addressed by constructing posterior probability
distributions of the unknowns. Given the posterior, one often wants to make inference
about the unknowns, e.g., if we are estimating parameters, finding the values that maxi-
mize their posterior, or the values that minimize some cost function given the uncertainty
of the parameters. Unfortunately, obtaining closed-form solutions, usually expressed as
integrals of the posterior, is infeasible in most practical applications. Therefore, developing
approximate computational techniques, such as importance sampling and Markov chain
Monte Carlo (MCMC) algorithms, is often required [4–6].

The so-called tempering of the posterior distributions is a well-known procedure
for improving the performance of Monte Carlo (MC) algorithms [7–10]. Tempering is
performed by modulating an artificial scale parameter or by sequentially including new
data. There are several reasons for the improvement in performance: improving mixing,
discovering modes, fostering the exploration of the inference space, etc. In the first iterations
of the MC scheme, a posterior density with a bigger scale is considered. The artificial scale
parameter (often called temperature) is reduced along the iterations, until considering the
true posterior distribution. However, the user should select a temperature schedule, i.e.,
a decreasing rule for the scale parameter, which is usually chosen in an heuristic way [4,5].
In the literature, the tempering procedure has gained particular attention for the estimation
of the marginal likelihood (also known as Bayesian model evidence) [9,11,12].

Furthermore, the joint inference of parameters (denoted as θ) of observation models,
f(θ), and scale parameters of the likelihood function (that, in the scalar case, is usually
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denoted as σ) can be a hard task. Indeed, “wrong choices” of σ values can easily jeopardize
the sampling of θ. In this work, we introduce a procedure to tackle this problem.

To be specific, in this work, we design an adaptive importance sampling (AIS)
scheme [13] for Bayesian inversion problems, where an automatic tempering procedure
is implemented. We assume that the vector of observations y is obtained by a nonlinear
transformation f(θ) of the variables of interest θ, perturbed by additive Gaussian noise with
unknown power σ2. The nonlinear mapping f(θ) usually represents a complex physical
model, a computer code, etc. The resulting posterior densities are usually highly multi-
modal and complex distributions. Furthermore, the inference task in the joint space [θ, σ] is
particularly challenging. We introduce a split strategy to tackle this problem, involving an
optimization approach over σ and a sampling scheme for θ. More specifically, we design
an iterative procedure where these two tasks are alternated. Additionally, the current
maximum likelihood (ML) estimate of the noise power, σ̂2

ML, is employed as a tempering
parameter, starting from high values and then “cooling down” according to the ML esti-
mates at each iteration. Therefore, the proposed scheme deals with a sequence of tempered
posteriors according to the current estimation σ̂2

ML. It is important to observe that, given a
fixed vector θ, the ML estimator σ̂2

ML can be obtained analytically.
Furthermore, the complete Bayesian analysis regarding the joint posterior of θ and

σ is also possible (as discussed in Section 5). This is obtained by implementing a proper
re-weighting of the samples generated by the proposed algorithm, called Automatic
Tempering AIS (ATAIS), without any additional evaluations of the observation model.
An approximation of the marginal posterior of σ is provided as well. The advantages of
the proposed scheme are shown in two numerical experiments, one of them considering a
complex astronomical model.

2. Problem Statement

Let us denote the observed measurements as y = [y1, ..., yK]
> ∈ RK, and the variable

of interest that we wish to infer as θ = [θ1, ..., θM]> ∈ Θ ⊆ RM. Furthermore, let us assume
the observation model

y = f(θ) + v, (1)

where we have a nonlinear mapping,

f(θ) = [ f1(θ), ..., fK(θ)]
> : Θ→ RK with Θ ⊆ RM, (2)

and a Gaussian perturbation noise,

v = [v1, ..., vK]
> ∼ N (v|0, σ2IK), (3)

with σ > 0, and IK denotes the K-dimensional identity matrix. The model can be easily
extended to a matrix of observations Y = [y1, ..., yK]

> ∈ Rdy×K instead of a vector, if the
nonlinear mapping is of type F(θ) = [f1(θ), ..., fK(θ)]

> : Θ ⊆ RM → Rdy×K. The noise
variance σ2 is unknown, in general. The mapping f(θ) may be analytically unknown: the
only assumption is that we are able to evaluate it pointwise. The likelihood function is

`(y|θ, σ) =
1

(2πσ2)K/2 exp
(
− 1

2σ2 ||y− f(θ)||2
)

, (4)

=
1

(2πσ2)K/2 exp

(
− 1

2σ2

K

∑
k=1

(yk − fk(θ))
2

)
. (5)

Note that we have two types of variables of interest: the vector θ contains the pa-
rameters of the nonlinear mapping f(θ), whereas σ is a scale parameter of the likelihood
function.

Given the vector of measurements y, we wish to make inferences regarding the hidden
parameters θ and the noise power σ2, obtaining at least some point estimators θ̂ and
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σ̂2. We are also interested in performing uncertainty and correlation analysis for the
components of θ. Furthermore, we aim to perform model selection, i.e., to compare, select,
or properly average different models.

Bayesian inference in the complete space. We consider independent prior densities
gθ(θ) and gσ(σ) over the unknowns. Therefore, the complete posterior density is

p(θ, σ|y) = 1
p(y)

p(θ, σ, y) =
1

p(y)
`(y|θ, σ)gθ(θ)gσ(σ), (6)

The marginal likelihood is

Z = p(y) =
∫
R+

∫
Θ
`(y|θ, σ)gθ(θ)gσ(σ)dθdσ, (7)

This quantity is often needed for model selection. While Z is generally unknown, we
can usually evaluate pointwise the un-normalized posterior π(θ, σ|y) = `(y|θ, σ)gθ(θ)gσ(σ),
i.e., p(θ, σ|y) ∝ π(θ, σ|y). More generally, the computation of integrals of the form

I(h) =
∫
R+

∫
Θ

h(θ, σ)p(θ, σ|y)dθdσ, (8)

where h : Θ×R+ → R is an integrable function, is usually required. We consider a Monte
Carlo quadrature approach for approximating the integral above and, more generally,
provide a particle approximation of the joint posterior p(θ, σ|y).

Main observation. Generating random samples from a complicated posterior in
Equation (6) and efficiently computing the integrals as in Equations (7) and (8) is very often
a hard task. Moreover, this task becomes more difficult when we try to perform a joint
inference where scale parameters are involved, i.e., σ, and parameters of the nonlinearity,
i.e., θ. Indeed, “wrong choices” of σ values can easily jeopardize the sampling of θ. In the
next section, we describe a strategy that we propose to tackle this problem. Before do so,
however, we need to recall some additional definitions.

Conditional and marginal posteriors. In other to design efficient computational
schemes, it is often useful to consider the conditional posteriors, for instance,

p(θ|y, σ) =
p(θ, y, σ)

p(y, σ)
=

`(y|θ, σ)gθ(θ)gσ(σ)

p(y|σ)gσ(σ)
,

=
`(y|σ, θ)gθ(θ)

p(y|σ) . (9)

In the next section, we will see that the idea underlying the proposed scheme is to split
the space [θ, σ], restricting the sampling problem only to θ and considering an optimization
problem with respect to σ. The conditional marginal likelihood is obtained by integrating
out one of the two variables, e.g.,

Z(σ) = p(y|σ) =
∫

θ
`(y|θ, σ)gθ(θ)dθ. (10)

The integral above cannot be computed analytically, in general. We can also consider
marginal posteriors, for instance, the marginal posterior of σ is

p(σ|y) = p(y|σ)gσ(σ)

p(y)
=

Z(σ)gσ(σ)

Z
. (11)

Note that the joint posterior in Equation (6) can be also written as

p(θ, σ|y) = p(θ|y, σ)p(σ|y). (12)



Mathematics 2021, 9, 784 4 of 17

Outline of the proposed approach. The underlying idea of this work is to divide
the inference study in two parts. In the first part (Sections 3 and 4), we focus on the
study of the conditional posterior p(θ|y, σ) given a fixed σ. Then, in the second part
(Section 5), we also estimate the marginal posterior p(σ|y). Finally, using (12), we can
obtain a final approximation of the complete posterior p(θ, σ|y). Estimations of Z(σ) and
Z are also obtained.

3. Key Observations and Proposed Approach
3.1. Split Inference

In the first part of work, we assume a uniform proper (or improper) prior over θ, i.e.,
gθ(θ) ∝ 1 in Θ. The possible use of a general choice of gθ(θ) is discussed in Section 4.1.
Let θMAP = arg maxθ p(θ|y, σ) denote the MAP estimator of θ. Generally, θMAP should be a
function of σ, i.e., θMAP = θMAP(σ). However, due to the choice of likelihood function (and
the uniform prior) considered in this paper, we have that

θMAP = arg max
θ

log p(θ|y, σ),

= arg min
θ
||y− f(θ)||2, with gθ(θ) ∝ 1, for θ ∈ Θ,

which does not depend on σ, i.e., we have that θMAP maximizes the conditional posterior
p(θ|y, σ) for any σ. See Appendix A for further details.

Furthermore, the variance of the conditional posterior p(θ|y, σ) grows when
σ increases. In this sense, with larger σ, the density p(θ|y, σ) is “broader”; thus, it is
easier for Monte Carlo methods to explore the space (namely, we have a tempering effect).
Based on these considerations, we can run Monte Carlo schemes (specifically IS algorithms)
on p(θ|y, σ0) with a large value σ0 for estimating θMAP more efficiently. Furthermore,
apart from estimating θMAP, we are also interested in studying the conditional posterior
p(θ|y, σML), where

σML = arg max
σ

`(y|θMAP, σ).

The value σML can be obtained in closed-form (see Appendix A). In fact, for any θ,
we have

`(y|θ, σ) ∝
(

1
σ2

) K
2

exp
(
−||y− f(θ)||2

2σ2

)
, (13)

which has the form of an Inverse Gamma density for σ2 and it has a unique mode at√
1
K ||y− f(θ)||2, where θ is a fixed. Therefore, finally we have

σML =

√
1
K
||y− f(θMAP)||2.

This can serve as a point estimator of the noise power in the system, and also as
a threshold value to stop the tempering of the conditional posterior, as we show in the
following section.

3.2. An Iterative Scheme

Consider that we start with a large value σ0, which can be viewed as a coarse approxi-
mation of σML, so we denote it σ0 = σ̂

(0)
ML . Let θ̂

(1)
MAP denote an estimate of θMAP obtained by

working w.r.t. p(θ|y, σ̂
(0)
ML ). We use this current estimation to obtain the next value of σ, i.e.,

σ̂
(1)
ML =

√
1
K ||y− f(θ̂(1)MAP)||2. In general, σ̂

(1)
ML is a better estimator of σML than σ̂

(0)
ML , as we have

tried to evaluate of the smallest error between f(θ) and the data, y, i.e., ||y− f(θ)||, which
is related to the power of the noise perturbation in the system. For instance, assuming



Mathematics 2021, 9, 784 5 of 17

zero noise, we would have ||y− f(θMAP)|| = 0, recalling that gθ(θ) ∝ 1 for θ ∈ Θ. We can
iterate this procedure for t = 1, . . . , T:

1 Estimate θ̂
(t)
MAP by Monte Carlo (e.g., an IS scheme) by approximately maximizing

p(θ|y, σ̂
(t−1)
ML ).

2 Compute

σ̂
(t)
ML =

√
1
K
||y− f(θ̂(t)MAP)||2. (14)

With this iterative scheme, we have that σ̂
(T)
ML → σML as T grows, thus we eventually

perform IS with respect to the density of interest p(θ|y, σML). Furthermore, a non-increasing
sequence of values σ̂

(0)
ML ≥ σ̂

(1)
ML ≥ · · · ≥ σ̂

(T)
ML is produced, which facilitates the estimation of

θMAP, and ensures the IS estimation of p(θ|y, σML) is performed efficiently by using the set
of intermediate, tempered (i.e., wider) distributions p(θ|y, σ̂

(t)
ML ) for t = 0, 1, ..., T. Finally,

a particle approximation of p(θ|y, σ̂
(T)
ML ) is obtained, i.e.,

p(θ|y, σ̂
(T)
ML ) =

T

∑
t=1

N

∑
n=1

w̃(n)
t δ(θ− θ

(n)
t ),

where ∑T
t=1 ∑N

n=1 w̃(n)
t = 1. Note that w̃(n)

t are the final corrected weights obtained at the
end of the algorithm (see Algorithm 1).

4. Automatic Tempering Adaptive Importance Sampling (ATAIS)

In this section, we describe an adaptive importance sampler with an automatic temper-
ing approach which follows the procedure given above. At each iteration t of the algorithm,
we have an ML approximation of σ, i.e., σ̂

(t−1)
ML . Considering Equation (9), we define the

un-normalized tempered conditional posterior at the t-th iteration,

πt(θ) = `(y|θ, σ̂
(t−1)
ML )gθ(θ), (15)

where we assume gθ(θ) ∝ 1 in Θ. For other generic choice of gθ(θ), see the discussion in
Section 4.1. At each iteration, we consider p(θ|y, σ̂

(t−1)
ML ) ∝ πt(θ) as the target distribution.

The dependence on the iteration t occurs because σ̂
(t)
ML varies with t. The ATAIS algorithm

is outlined in Algorithm 1. The resulting scheme is an adaptive IS algorithm which
combines sampling schemes and stochastic optimization. It is important to remark that if
σ̂
(0)
ML is bigger than the true ML value, we generate a non-increasing sequence of σ̂

(t)
ML , i.e.,

σ̂
(0)
ML ≥ σ̂

(1)
ML ≥ ...σ̂(t)

ML ≥ σ̂
(t+1)
ML , etc. Note that this is true as we have assumed a uniform

prior gθ(θ). To see this, recall that σ̂ML =
√

1
K ||y− f(θ̂MAP)||2. Improving θ̂MAP means that

the squared error ||y− f(θ̂MAP)||2 is smaller, as shown in Equation (14), which implies that
σ̂ML always decreases (provided that we start with σ̂ML > σML).

IS steps. A set of N samples {θ(n)t }N
n=1 are drawn from a (normalized) proposal

density q(θ|µt, Σt) with mean µt and a covariance matrix Σt. An importance weight

w(n)
t =

πt(θ
(n)
t )

q(θ(n)t |µt, Σt)
,

is assigned to each sample.
Proposal adaptation. A particle estimation of the conditional MAP estimator of θ

is given by θ̂t = arg max
n

πt(θ
(n)
t ). The value of current MAP approximation πt(θ̂t) is

then compared with the value of global MAP estimator obtained so far denoted as πMAP.
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If πt(θ̂t) ≥ πMAP, all the global MAP estimators are updated and the proposal pdf is moved
at θ̂t, i.e., we set

θ̂
(t)
MAP = θ̂t, πMAP = πt(θ̂t), µt = θ̂t. (16)

Algorithm 1: ATAIS: AIS with automatic tempering.

1. Initializations: Choose N, µ1, Σ1, and obtain an initialization for σ̂
(0)
ML , and set

πMAP = 0.
2. For t = 1, . . . , T:

(a) Sampling:

i. Draw θ
(1)
t , ..., θ

(N)
t ∼ q(θ|µt, Σt).

ii. Assign to each sample the weights

w(n)
t =

πt(θ
(n)
t )

q(θ(n)t |µt, Σt)
, n = 1, ..., N. (17)

(b) Current maximum estimations:

i. Obtain θ̂t = arg max
n

πt(θ
(n)
t ), and compute r̂t = f(θ̂t)

ii. Compute σ̂t =
√

1
K ||y− r̂t||2.

(c) Global maximum estimations:

i. If σ̂t ≤ σ̂
(t−1)
ML , then set σ̂

(t)
ML = σ̂t. Otherwise, set σ̂

(t)
ML = σ̂

(t−1)
ML .

ii. If πt(θ̂t) ≥ πMAP, then set θ̂
(t)
MAP = θ̂t and πMAP = πt(θ̂t). Otherwise,

θ̂
(t)
MAP = θ̂

(t−1)
MAP and keep the value of πMAP.

(d) Adaptation: Set

µt = θ̂
(t)
MAP, (18)

Σt =
N

∑
n=1

w̄(n)
t (θ

(n)
t − θ̄t)

>(θ
(n)
t − θ̄t) + εIM, (19)

where w̄(n)
t

w(n)
t

∑N
i=1 w(i)

t

are the normalized weights, θ̄t = ∑N
n=1 w̄(n)

t θ
(n)
t and

ε > 0 is a small scalar value .
3. Output: Return the final estimators θ̂

(T)
MAP, σ̂

(T)
ML , and all the weighted samples

{θ(n)t , w̃(n)
t }, for all t and n, with the corrected weights

w̃(n)
t = w(n)

t
πT+1(θ

(n)
t )

πt(θ
(n)
t )

. (20)

Otherwise, we keep the previous values of θ̂
(t)
MAP = θ̂

(t−1)
MAP , πMAP, and µt = µt−1. The

covariance matrix Σt is adapted by considering the empirical covariance of the weighted
samples. Note that we set µt = θ̂

(t)
MAP instead of using the empirical mean of the samples (as

in other classical AIS schemes). This is because we have noticed that this choice provides
better and more robust results, especially as the dimension of the problem grows.

Automatic tempering. As we showed in the previous section, the current ML estima-
tor of σ can be obtained analytically as

σ̂t =

√
1
K
||y− r̂t||2, (21)
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where r̂t = f(θ̂t). If the current ML estimator σ̂t is smaller than the current global one σ̂
(t−1)
ML ,

i.e., σ̂t < σ̂
(t−1)
ML , then we update σ̂

(t)
ML = σ̂t, Otherwise, we keep the value of σ̂

(t)
ML = σ̂

(t−1)
ML .

Actually, with a uniform prior gθ(θ), every time that we update θ̂
(t)
MAP, we also update σ̂

(t)
ML

(see footnote in the previous page).
ATAIS outputs. After T iterations, a final correction of the weights is needed, i.e.,

w̃(n)
t = w(n)

t
πT+1(θ

(n)
t )

πt(θ
(n)
t )

, (22)

in order to obtain a particle approximation of the measure of the final conditional posterior
p(θ|y, σ̂

(T)
ML ) ∝ πT+1(θ). Thus, the algorithm returns the final estimators θ̂

(T)
MAP, σ̂

(T)
ML , and all

the weighted samples {θ(n)t , w̃(n)
t }, for all n = 1, ..., N and t = 1, ..., T. Other outputs can

be obtained with a postprocessing of the weighted samples, as shown below. Note that
Equation (22) does not require any additional evaluation of the model, and the error is
e(n)t = ||y− f(θ(n)t )||2. Moreover, we can also use e(n)t and {θ(n)t } for building a particle
approximation of any other conditional posterior p(θ|y, σ). This allows the study of the
marginal posterior p(σ|y) and provides the complete Bayesian inference, as we show in
the next section.

4.1. With a Generic Prior gθ(θ)

The ATAIS algorithm is based on the fact that θMAP does not depend on σ. This
allows us to progressively estimate it by targeting the sequence of tempered posteriors
πt(θ) ∝ p(θ|y, σ̂

(t)
ML ) that share all the same MAP. However, in the case gθ(θ) is not uniform,

we generally have one θMAP(σ) for each p(θ|y, σ), and we could have that the sequence of
θMAP(σ̂

(t)
ML ) will not approach θMAP(σML).

If the data are informative and the prior gθ(θ) is chosen such it is vague with respect
to the likelihood, the position of θMAP(σ) is not very sensitive to the value of σ. Namely, we
have θMAP(σ̂

(1)
ML ) ≈ θMAP(σ̂

(2)
ML ) ≈ · · · ≈ θMAP(σML), and thus our algorithm can be applied in

this context. When the data are not informative, we should use an even more vague prior
(i.e., wider than the likelihood function) in order to maintain the usefulness of the algorithm.

5. Complete Bayesian Inference with ATAIS

Let us assume we have a proper prior gθ(θ) and we introduce another proper prior
gσ(σ) for σ. The outputs of the ATAIS algorithm can serve to approximate the normalizing
constant of the joint posterior p(θ, σ|y) ∝ `(y|θ, σ)gθ(θ)gσ(σ), i.e., the so-called marginal
likelihood or Bayesian model evidence, given by

Z =
∫
R+

∫
Θ
`(y|θ, σ)gθ(θ)gσ(σ)dθdσ =

∫
R+

Z(σ)gσ(σ)dσ, (23)

where we have denoted Z(σ) =
∫

Θ
`(y|θ, σ)gθ(θdθ, usually called conditional marginal

likelihood. The quantity Z is useful for model selection purposes. Furthermore, a complete
Bayesian study of the joint posterior p(θ, σ|y) can be provided as well.

Approximation of Z(σ) = p(y|σ). After the T iterations of ATAIS, we can also approx-
imate the conditional marginal likelihood Z(σ) = p(y|σ) without additional evaluations
of the target function. Indeed, saving the error values at each particle obtained for the
computation of the likelihood function during ATAIS,

e(n)t = ||y− f(θ(n)t )||2,
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We can compute the IS weights,

ρ
(n)
t (σ) =

1

(2πσ2)
K
2

exp
(
− e(n)t

2σ2

)
gθ(θ

(n)
t )

q(θ(n)t |µt, Σt)
, (24)

for a generic value of σ Thus, the IS estimator of the conditional marginal likelihood Z(σ)
is given by the arithmetic mean of the weights ρ

(n)
t (σ),

Ẑ(σ) = p̂(y|σ) = 1
NT

T

∑
t=1

N

∑
n=1

ρ
(n)
t (σ). (25)

Approximation of Z. Drawing σ(r) ∼ gσ(σ), for r = 1, ..., R, (or considering a deter-
ministic grid, e.g., as a Riemannian integration), we can approximate the global marginal
likelihood Z by applying simple Monte Carlo to the integral in Equation (23),

Ẑ =
1
R

R

∑
r=1

Ẑ(σ(r)). (26)

Approximation of p(σ|y). An approximation of the marginal posterior p(σ|y) =
p(y|σ)gσ(σ)

p(y) can be also obtained as

p(σ|y) ≈ p̂(σ|y) = Ẑ(σ)gσ(σ)

Ẑ
, (27)

which can be used to approximate, e.g., the MAP of p(σ|y) by σMAP-marg ≈ arg maxσ Ẑ(σ)gσ(σ).
Other different moments of p(σ|y) can be computed by a deterministic quadrature (as the
problem is now one-dimensional) or applying noisy Monte Carlo approaches.

Complete Bayesian analysis. We can approximate the integral of interest as

I =
∫
R+

∫
Θ

h(θ, σ)p(θ, σ|y)dθdσ, (28)

=
∫
R+

∫
Θ

h(θ, σ)p(θ|y, σ)p(σ|y)dθdσ (29)

≈ 1
J

J

∑
j=1

T

∑
t=1

N

∑
n=1

ρ̄
(n)
t (σ(j))h(θ(n)t , σ(j)), (30)

where

ρ̄
(n)
t (σ(j)) =

ρ
(n)
t (σ(j))

∑T
τ=1 ∑N

i=1 ρ
(i)
τ (σ(j))

, (31)

and σ(j) are generated by applying a noisy MCMC with invariant density p̂(σ|y) ∝
Ẑ(σ)gσ(σ). Note that the samples θ

(n)
t do not depend on the index j (they do not change) as

we are recycling the particles generated by ATAIS and reusing evaluations
e(n)t = ||y− f(θ(n)t )||2.

6. Simulations

We test the proposed scheme in two numerical examples: The first numerical exper-
iment is a simple bidimensional example (which is easy to be reproduced). The second
experiment considers a real-world application, i.e., a radial velocity model of exoplanet
systems which is often employed in astronomy applications (with a dimension of the
inference problem of 6 and 11).
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6.1. First Numerical Analysis

For the sake of simplicity, let us consider θ ∈ R and an observation model given by
the equation

yk = θ2 + log(| sin(10θ)|) + vk,

so that f (θ) = θ2 + log(| sin(10θ)|), and vk ∼ N (0, σ2). We consider θtrue = 2.5, and
σtrue = 4. We generate K = 8 observations from the model above. We also con-
sider a uniform prior for θ in (0, 20]. The conditional posterior p(θ|y, σtrue) is shown in
Figure 1c. We can observe that p(θ|y, σtrue) is highly multimodal. Figure 1 also depicts the
conditional posteriors p(θ|y, σ) with σ ∈ {10, 20}. Considering also a uniform prior over
σ in (0, 20], we have also a bidimensional joint posterior over [θ, σ], which is depicted in
Figure 2a.

(a) σ = 20 (b) σ = 10 (c) σ = σtrue = 4

Figure 1. Conditional posteriors corresponding to different values of σ: (a) σ = 20, (b) σ = 10, and (c) σ = σtrue = 4.

(a) Joint posterior (b) Marginal posterior p(θ|y) (c) Marginal posterior p(σ|y)

Figure 2. The bidimensional joint posterior p(θ, σ|y) and the two marginal posteriors p(θ|y), p(σ|y) in Equation (11),
computed by using a thin grid approximation.

In this bidimensional example, it is possible to obtain the ground-truths using an
expensive thin grid. We show the ground-truths of the different pdfs in Table 1. Moreover,
the true value of the complete evidence Z = p( y) = 1.5983× 10−9. As the prior over σ
is uniform, the maximum likelihood of σ is σML = σMAP-joint = 3.23. The two marginal
posteriors are shown in Figure 2b,c.

Table 1. Summary of pdfs and ground-truths for the first numerical experiment.

Pdf Expectation Variance MAP

p(θ|y, σML) 2.48 0.11 2.56
p(σ|y) 4.32 2.43 3.46
p(θ|y) 2.46 0.18 2.56
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We apply ATAIS with the goal of estimating the expected value and the variance of
the posterior density with respect to θ. We consider a Gaussian proposal q(θ|µt, λt) with
µ0 = 10 and a starting variance of λ0 = 4. Note that µ0 is located in a region that does
not contain modes. We also start with σ̂

(0)
ML = 20 and πMAP = 0 (initial conditions). The

Mean Square Error (MSE) of ATAIS, averaged over 500 runs, in estimation of different
moments and modes as function of N (and with T = 10), is given in Table 2. The ML
estimation σ̂

(t)
ML , as function of the iteration t (with N = 5) for different runs, is given in

Figure 3a. The approximation of the marginal posterior p(σ|y), denoted p̂(σ|y), is obtained
as in Equation (27) in one specific run, with different N ∈ {10, 100, 500} and T = 10. The
approximations of the joint posterior p(θ, σ|y) and the marginal posterior p(θ|y), obtained
by resampling the particles according to the normalized weights in Equations (31) and (24),
are shown in Figure 4, i.e., using a sampling importance resampling procedure. For more
details, see in [14] and Chapter 24 in [15].

Table 2. Mean Square Error (MSE) of ATAIS (averaged over 500 runs), in the estimation of the evidence, different moments
and modes as function of N and T = 10.

Value N = 10 N = 100 N = 1000 N = 5000 Ground-Truths

E[θ|y, σML] 0.0311 0.0098 0.0034 0.0024 2.48
var[θ|y, σML] 0.0474 0.0370 0.0298 0.0201 0.11

θMAP 0.0410 0.0337 0.0285 0.0127 2.56
E[σ|y] 0.9233 0.0785 0.0097 0.0023 4.32

var[σ|y] 6.1869 0.2640 0.0035 0.0010 2.43
σMAP-marg 0.0056 0.0004 0.0001 3× 10−5 3.46

σML 8× 10−5 2× 10−5 5× 10−7 6× 10−9 3.23
Z = p( y) 2× 10−18 1.8× 10−20 1.4× 10−20 3.6× 10−22 1.6× 10−9

(a) σ̂
(t)
ML vs t (b) p(σ|y) for different N (T = 10)

Figure 3. (a) The maximum likelihood (ML) estimation σ̂
(t)
ML (different runs) versus the number of iterations t, with N = 5.

(b) The true marginal posterior p(σ|y) and different approximations, in one specific run, p̂(σ|y) obtained as in Equation (27)
with different N ∈ {10, 100, 500} and T = 10 (thus, the total number of samples are NT).
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(a) Histogram with 2× 106 samples (b) 104 samples by ATAIS (c) Histogram with 2× 106 samples

Figure 4. Approximations obtained with ATAIS. (a,b) Joint posterior p(θ, σ|y): (a) by an histogram with 2× 106 samples;
(b) 104 samples from joint posterior obtained by ATAIS. (c) Approximation by an histogram with 2× 106 samples, of the
marginal posterior p(θ|y).

6.2. Radial Velocity Curves of Exoplanets and Binary Systems

In this example, we consider an application in an astronomical model. In recent
years, the problem of revealing objects orbiting other stars has acquired large attention.
Different techniques have been proposed to discover exo-objects but, nowadays, the radial
velocity technique is still the most used [16–19]. The problem consists in fitting a model
(the so-called radial velocity curve) to data acquired at different moments spanning during
long time periods (up to years). The model is highly nonlinear, and it is costly in terms of
computation time (especially for certain sets of parameters). Obtaining a value to compare
to a single observation involves numerically integrating a differential equation in time
or an iterative procedure for solving to a nonlinear equation. Typically, the iteration is
performed until a threshold is reached or 106 iterations are performed. The problem of
radial velocity curve fitting is applied in several related applications.

Observation model—likelihood. When analyzing the radial velocity data of an
exoplanetary system, it is commonly accepted that the wobbling of the star around the
center of mass is caused by the sum of the gravitational force of each planet independently
and that they do not interact with each other. Each planet follows a Keplerian orbit, and
the radial velocity of the host star is given by

yr,t = V0 +
S

∑
i=1

Ai[cos(ui,t + ωi) + ei cos(ωi)] + ξt, (32)

with t = 1, . . . , T and r = 1, . . . , R. In this equation, Ai is the amplitude of the curve, wi
is the argument of perigee, and ei is the eccentricity of the orbit of the i-th planet. The
parameter V0 represents the mean velocity, and it is common for all the planets. The
number of objects in the system is S, which is considered to be known in this experiment
(for the sake of simplicity). Both yr,t and ui,t depend on time t, and then ξt is a Gaussian
noise perturbation with variance σ2. The likelihood function is defined by (32) and some
indicator variables described below. The angle ui,t is the true anomaly of the planet i, and
it can be determined from

dui,t

dt
=

2π

Pi

(1 + ei cos ui,t)
2

(1− ei)
3
2

(33)

This equation has analytical solution. As a result, the true anomaly ut can be deter-
mined from the mean anomaly M. However, the analytical solution contains a nonlinear
term that needs to be determined by iterating. First, we define the mean anomaly Mi,t as

Mi,t =
2π

Pi
(t− τi), (34)
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where τi is the time of periastron passage of the planet i and Pi is the period of its orbit.
Then, through the Kepler’s equation,

Mi,t = Ei,t − ei sin Ei,t, (35)

where Ei,t is the eccentric anomaly. Equation (35) has no analytic solution and it must be
solved by an iterative procedure. A Newton–Raphson method is typically used to find the
roots of this equation [20]. For certain sets of parameters, this iterative procedure can be
particularly slow. We also have

tan
ui,t

2
=

√
1 + ei
1− ei

tan
Ei,t

2
, (36)

The variable of interest θ is then the vector

θ = [V0, A1, ω1, e1, P1, τ1, . . . , AS, ωS, eS, PS, τS], (37)

Then, for a single object (e.g., a planet or a natural satellite), the dimension of θ is
M = 5 + 1 = 6, with two objects the dimension of θ is M = 11 etc.

This example consists in a synthetic radial velocity curve of a planetary system with
one planet or two planets (i.e., S = 1 or S = 2). More specifically, we generate simulated
data with a model with two planets. The orbital parameters of the planets are listed in
Table 3, where P is the period of the orbit, A is the amplitude of the curve, e is the eccentricity
of the orbit, ω is the argument of perigee, and τ is the last periastron passage. A mean
velocity V0 = 5 m s−1 is assumed. A Gaussian noise perturbation is added with a standard
deviation σ = 3 m s−1. To simulate observations, a total of K = 120 data points are selected
from three random time periods (and two planets in the system). Note that the amplitude
of the radial velocity curve of the second planet is close to the noise level. We run ATAIS
and a standard AIS scheme with the model with one planet and with the model with two
planets. The purpose of this simulation is to check the ability of the method to detect the
two planets (by approximating the model evidence).

Table 3. Main orbital parameters of the two exoplanets in the simulation.

Parameter Planet 1 Planet 2

P 15 d 115 d
A 25 m s−1 5 m s−1

e 0.1 0.0
ω 0.61 rad 0.17 rad
τ 3 d 24 d

We apply ATAIS and a standard AIS scheme [13] over the space [θ, σ] for approxi-
mating the model evidence Z = p( y) (marginal likelihood) of both models (one planet
or two planets) with the given data (generated considering two planets). Uniform priors
are considered for each parameter: P ∈ [0, 365], A ∈ [−20, 20], e ∈ [0, 1], ω ∈ [0, 2π], and
τ ∈ [0, 50] (moreover, σ ∈ [0, 30] for the standard AIS scheme). The ATAIS algorithm and
the standard AIS scheme have been run with N = 106 and T = 50 iterations for both the
model with one planet and the model with two planets. In both cases, we consider the
same Gaussian proposal with a starting standard deviation of 5 for each component (note
that the standard AIS scheme works in higher dimensional space due the inference over σ).
To decide which model is more probable, the model evidence Z of each model is estimated.
More specifically, we approximate the one-planet model Ẑ1 = p̂1(y) and the two-planet
model Ẑ2 = p̂2(y) with the ATAIS algorithm and the standard AIS scheme. When Ẑ1 > Ẑ2,
we select the first model; otherwise, if Ẑ1 < Ẑ2, we select the second one. The true model
is the two-planet model, as the simulated data were generated from that model. After
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500 independent runs, the percentage of correct detection of the true model for ATAIS is
≈ 98%, whereas with the standard AIS scheme is only ≈ 56%. This is due to the difficulty
of making inference jointly over [θ, σ]. Let us denote the Bayesian factor as B = Z2/Z1.
In ATAIS, the expected value of the ratio between the model evidences (averaged over

the 500 runs) is E[B] ≈ 5 · 103 with a relative variance of E[(B−E[B])2]
E[B]2 ≈ 0.04. In the case of

the standard AIS, we have E[B] ≈ 16.32 and E[(B−E[B])2]
E[B]2 ≈ 0.15. Therefore, for ATAIS, the

model with two planets is clearly more probable than the model with one planet.
The fitted curves, corresponding to the vector of parameters θ̂MAP obtained with

ATAIS, are shown in Figure 5. From the figure, it is not clear which model better fits the
simulated observations (blue points), although the model with two planets seems to better
fit the observations in the time period from 200 to 300 days. The values of θ̂MAP, obtained
in one specific run by ATAIS, are given in Table 4. We notice that ω and τ are highly
correlated and more iterations may be needed to obtain the actual global maximum, but the
remaining parameters obtained from θ̂MAP are similar to the simulated values. In addition,
the amplitude of the curve of the second planet is close to the intensity of the noise, making
it difficult to derive the best fit for that planet. Summarizing, our results show the method is
able to discriminate between a model with one planet (with six dimensions of the inference
problem) and a model with two planets (with 11 dimensions of the inference problem), for
this particular simulation. Finally, the evolution of the automatic tempering parameter σ̂

(t)
ML

is shown in Figure 6. The dashed line is the evolution of σ̂
(t)
ML for the single-planet model,

whereas the continuous line is the evolution of σ̂
(t)
ML for the model with two planets. In this

second model, the tempering parameter reaches a smaller value, as expected.

Table 4. The value of θ̂MAP and the variances of the marginal posteriors for the 2-planets model (with
K = 120 data points).

Parameter
Planet 1 Planet 2

θ̂MAP Var(θ| y) θ̂MAP —Planet 2 Var(θ| y)

P 14.99 d 0.18 110.39 d 11.28
K 23.78 m s−1 0.52 3.50 m s−1 0.44
e 0.05 0.047 0.00 0.003
ω 7.69 rad 0.61 0.68 rad 0.82
τ 6.8 d 0.76 7.96 d 20.31

Figure 5. Comparison of the results of the ATAIS algorithm with the simulations (blue dots). Left panel shows, in gray, the
radial velocity curve for θ̂MAP using a model with one planet. Right panel is like left panel but considering a model with
two planets.



Mathematics 2021, 9, 784 14 of 17

Figure 6. Evolution of the tempering parameter σ̂
(t)
ML . We decide σ̂

(0)
ML = 50 as starting value (the

figure shows from t = 1), which is an arbitrary high value to help the exploration in the first iteration.

However, after the first iteration, the algorithm is able to obtain reasonable values of σ̂
(1)
ML . The dashed

line is the evolution for the model with one planet. The continuous line is the evolution of the
two-planet model.

7. Conclusions

We have proposed a novel AIS scheme for Bayesian inversion problems where an au-
tomatic tempering procedure is implemented (called ATAIS). The inference of the variables
of interest θ and the noise power σ2 is divided. A sampling strategy is considered for θ and
an optimization approach is employed for σ2. Thus, ATAIS performs an iterative procedure,
alternating sampling and optimization steps. Therefore, the proposed scheme deals with a
sequence of tempered posteriors according to the current estimation of the noise power.
We have also discussed the possibility of approximating the marginal posterior of σ without
additional evaluations of the complex model. Furthermore, the complete Bayesian analysis
regarding the complete joint posterior is possible as discussed in Section 5, again without
any additional evaluations of the likelihood function.

Several simulations are provided and the application to a sophisticated astronomical
model has been considered, where the number of planets in the system is detected by
the analysis of the marginal likelihood. The results show the benefits of the proposed
scheme. For instance, in the astronomical example, the percentage of correct detection
of the true model obtained by ATAIS is ≈98%, whereas with the standard AIS scheme is
only ≈56%. As future research, we plan to extend the ATAIS scheme in order to deal with
an observation model with correlated noise perturbations (for instance, using a Gaussian
Process). Moreover, the use of parallel AIS schemes (or MCMC algorithms) will be also
considered. A combination of parallel MCMC chains and AIS schemes can be found in
the so-called layered AIS method and other similar approaches [21,22]. This idea seems
particularly interesting for improving the inference with radial velocity models.
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Appendix A. On the Optimization of the Likelihood Function

Let us set δ = σ2 and consider to optimize of the likelihood function

`(θ, δ) =
1

(2πδ)K/2 exp
(
−V(θ)

δ

)
.

Recall that, in our model, we have V(θ) = || y− f(θ)||2. We desire to obtain

[θML, δML] = arg max `(θ, δ).

We can write the gradient and equal to zero,
∇θ`(θ, δ) = −1

δ
∇θV(θ)

[
1

(2πδ)K/2 exp
(
−V(θ)

δ

)]
= 0 =⇒ ∇θV(θ) = 0,

∂`(θ, δ)

∂δ
=

e−
V(θ)

δ (2V(θ)− δK)

2
K
2 +1δ

K
2 +2 πK/2

= 0 =⇒ δ =
2
K

V(θ).

(A1)

We have obtained that the ML solution is defined by the system of equations,
∇θV(θML) = 0

δML =
2
K

V(θML).
(A2)
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