Topic 1- part 3 - "LTI systems in time domain"

Discrete Time Systems (DTS)

Luca Martino — <u>luca.martino@urjc.es</u> — <u>http://www.lucamartino.altervista.org</u>

LTI systems

- We will focus on: LINEAR TIME INVARIANT (LTI) SYSTEMS
- LTI systems in time
- LTI systems in transformed domain (frequency domain etc.)

ALL type of systems

LTI systems

In this slides, WE WILL SEE:

HOW to express (IN the TIME DOMAIN) the output of:

- 1. LTI systems in (continuous) time
- 2. LTI systems in DISCRETE time

HOW to express (IN the TIME DOMAIN) the output of:

1. LTI systems in (continuous) time

(this is just a *gentle and quick recall* since you should know these concepts from another previous course...)

HOW to express the output of LTI systems in TIME

Continuous Time - 2 WAYS:

CONVOLUTION INTEGRAL:

$$y(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau = \int_{-\infty}^{+\infty} x(t-\tau)h(\tau)d\tau$$

• LINEAR DIFFERENTIAL EQUATIONS, WITH CONSTANT COEFFICIENTS AND NULL INITIAL CONDITIONS:

$$\sum_{n=0}^{N} a_n \frac{d^n y(t)}{dt^n} = \sum_{m=0}^{M} b_m \frac{d^m x(t)}{dt^m}$$

(N) Initial conditions:

$$y(0) = \frac{dy(t)}{dt}\Big|_{t=0^-} = \dots = \frac{d^{N-1}y(t)}{dt^{N-1}}\Big|_{t=0^-} = 0$$

LTI system in CT: convolution by integral

h(t)= impulse response (i.e., to the Dirac delta)

$$x(t) = \delta(t) \Longrightarrow y(t) = \int_{-\infty}^{+\infty} \delta(\tau)h(t - \tau)d\tau$$
$$y(t) = \int_{-\infty}^{+\infty} \delta(t - \tau)h(\tau)d\tau$$
$$y(t) = \int_{-\infty}^{+\infty} h(\tau)\delta(t - \tau)d\tau = h(t)$$

h(t) represents completely the LTI system

Computation of the Convolution

- Calculating a convolution:
 - Convolution with a delta $\delta(t)$ \rightarrow easy (we obtain the signal x(t))
 - Convolution with exponentials

 easy more or less (solution: another exp.)
 - Generic Convolution → more difficult

4 steps:

$$y(t) = x(t) * h(t) \equiv \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

$$h(\tau) \xrightarrow[\text{Invert}]{} h(-\tau) \xrightarrow[\text{move}]{} h(t-\tau)$$

$$\xrightarrow[\text{Multiply}]{} x(\tau)h(t-\tau) \xrightarrow[\text{Integrate}]{} \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

Properties and examples of convolution

 \succ Neutral Element is the unit impulse (Dirac Delta): $\delta(t)$

$$x(t) * \delta(t) = x(t) \implies x(t) * \delta(t - t_0) = x(t - t_0)$$

Commutative:

$$x(t) * h(t) = h(t) * x(t)$$

$$x(t) \longrightarrow h(t) \longrightarrow y(t) \iff h(t) \longrightarrow x(t) \longrightarrow y(t)$$

Distributive:

$$x(t) \longrightarrow h_1(t) + h_2(t) \longrightarrow y(t) = x(t) * [h_1(t) + h_2(t)]$$

$$h_{eq}(t)$$

$$x(t) \longrightarrow h_1(t)$$

$$y(t) = x(t) * h_1(t) + x(t) * h_2(t)$$

$$h_2(t) \longrightarrow h_2(t)$$

Properties and examples of convolution

Associative:

$$y(t) = [x(t) * h_1(t)] * h_2(t) \Longrightarrow y(t) = x(t) * [h_1(t) * h_2(t)]$$

$$y(t) = x(t) * [h_2(t) * h_1(t)] \Longrightarrow y(t) = [x(t) * h_2(t)] * h_1(t)$$

$$x(t) \Longrightarrow h_1(t) \Longrightarrow h_2(t) \Longrightarrow y(t) \Longrightarrow x(t) \Longrightarrow h_1(t) * h_2(t) \Longrightarrow y(t)$$

$$x(t) \longrightarrow h_1(t) \longrightarrow h_2(t) \longrightarrow y(t) \iff x(t) \longrightarrow h_1(t) * h_2(t) \longrightarrow y(t)$$

$$h_2(t) \longrightarrow h_1(t) * h_2(t) \longrightarrow y(t)$$

Properties of LTI systems = become properties about h(t)

Causality:

$$h(t) = 0, \quad \forall t < 0$$

Stability:

$$\int_{-\infty}^{\infty} |h(\tau)| d\tau < \infty \to h(t)$$

Without memory:

$$h(t) = 0, \quad \forall t \neq 0 \rightarrow y(t) = cte.x(t)$$

HOW to express (IN the TIME DOMAIN) the output of:

2. LTI systems in DISCRETE time

HOW to express the output of LTI systems in TIME

DISCRETE Time - THIS IS A SPOILER !!

• CONVOLUTION SUM:

$$y[\mathbf{n}] = \sum_{k=-\infty}^{\infty} x[k]h[\mathbf{n} - k] \qquad y[\mathbf{n}] = x[\mathbf{n}] * h[\mathbf{n}]$$

• LINEAR <u>DIFFERENCE</u> EQUATIONS, WITH CONSTANT COEFFICIENTS AND NULL INITIAL CONDITIONS:

$$\sum_{i=0}^{L} b_i y[n-i] = \sum_{r=0}^{R} c_r x[n-r]$$

$$\frac{n \ge 0}{n = 0, 1, 2, 3...}$$

With L-INITIAL CONDITIONS (they are required)

$$y[-1], y[-2], ..., y[-L]$$

Linear Difference Equations

- A LTI systems in DT can be expressed using linear difference equations with constant coefficients. (and null initial conditions)
- **Definition:** $y[n] = \sum_{p=1}^{P} \frac{a_p}{p} y[n-p] + \sum_{m=0}^{M} \frac{b_m}{m} x[n-m]$
- They are ARMA (autoregressive-moving average) filters
- ☐ If all a_p=0 → FIR (FINITE IMPULSE RESPONSE) filters
- ☐ If all b_m=0 except b_0 → IIR (INFINITE IMPULSE RESPONSE) filters

Definition of LTI systems in DT

We focus on linear and invariant systems in DT:

If:
$$x[n] \rightarrow y[n]$$

Then: $x[n-n_0] \rightarrow y[n-n_0]$

If:
$$x_1[n] \to y_1[n]$$
 $x_2[n] \to y_2[n]$
Then: $ax_1[n] + bx_2[n] \to ay_1[n] + by_2[n]$

Response to the impulse in DT

Impulso response:

For the time invariance:

$$\delta[n-n_0]$$
 \longrightarrow SLTI $\longrightarrow h[n-n_0]$

For the linearity:

$$\delta[\mathbf{n} - \mathbf{n}_0] + \delta[\mathbf{n} - \mathbf{n}_1] \longrightarrow \mathbf{SLTI} \longrightarrow h[\mathbf{n} - \mathbf{n}_0] + h[\mathbf{n} - \mathbf{n}_1]$$

Response to the impulse in DT

Response to the impulse in DT

➤ Response to train of deltas → sum of response to the impulse (for the linearity)

$$\sum_{k=-\infty}^{\infty} a_k \delta[\mathbf{n}-\mathbf{k}] \to \left[\begin{array}{c} \mathrm{SLTI} \end{array} \right] \to \sum_{k=-\infty}^{\infty} a_k h[\mathbf{n}-\mathbf{k}]$$

Since x[n] can be expressed as a train of deltas, then:

$$x[\mathbf{n}] = \sum_{k=-\infty}^{\infty} x[k] \delta[\mathbf{n} - k] \to \begin{bmatrix} \mathsf{SLTI} \\ k = -\infty \end{bmatrix} \to \sum_{k=-\infty}^{\infty} x[k] h[\mathbf{n} - k]$$

Convolution in DT

Hence the output y[n] can be obtained as the convolution of h[n] with x[n]:

$$y[\mathbf{n}] = \sum_{k=-\infty}^{\infty} x[k]h[\mathbf{n} - k] \qquad y[\mathbf{n}] = x[\mathbf{n}] * h[\mathbf{n}]$$

Convolution of two signals in DT; notation:

$$x_1[n] * x_2[n] = \sum_{k=-\infty}^{\infty} x_1[k]x_2[n-k]$$

Computing of the convolution

For any time instant *n*: (practical consideration)

- 1) Express in the domain k:
- 2) Invert:

Move n units:

- 4) Multiply:
- 5) Sum:

Alternative way of computing a convolution

Alternative way:

- We can express one signal as sum of deltas
- Then we make the convolution with the other signal above in step 1)
- We sum all the signals obtained in step 2)

In the example on the right →
We can express x[n] as:

$$x[n] = 0.5\delta[n] + 2\delta[n-1]$$

$$y[n] = h[n] * x[n] = 0.5h[n] + 2h[n-1]$$

Length of the convolution is 4:

Start: sum of the starts (0+0=0) End: sum of the ends (2+1=3) (considering non-zero samples)

Length of the convolution is N+M-1

Properties of LTI systems in DT

- The response to the impulse h[n] provides a complete characterization of the LTI system.
- See below:

• Causality:
$$h[n] = 0, \forall n < 0$$

• Stability:
$$\sum_{-\infty}^{\infty} |h[n]| < \infty$$

• Memory:
$$h[n] = 0, \forall n \neq 0$$

Some additional properties of the LTI systems can be expressed as conditions over h[n]

Properties of the LTI systems in DT

Distributive property, parallel systems:

$$y[\mathbf{n}] = x[\mathbf{n}] * [h_1[\mathbf{n}] + h_2[\mathbf{n}]] = x[\mathbf{n}] * h_1[\mathbf{n}] + x[\mathbf{n}] * h_2[\mathbf{n}]$$

$$h_{eq}(t)$$

Associative property, systems in series:

$$y[\mathbf{n}] = x[\mathbf{n}] * h_1[\mathbf{n}] * h_2[\mathbf{n}] = x[\mathbf{n}] * h_2[\mathbf{n}] * h_1[\mathbf{n}]$$

$$h_{eq}(t)$$

Questions?