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Introduction Signal and Systems

Introduction

Signals and Systems (I)

A physical phenomenon is the
variation, transformation of a
given physical magnitude into
another, due to the interaction with
a physical environment.

The mathematical model that represents the transformation of these physical magnitudes is
called signal and the mathematical model that represents the effect of the physical
environment is called system.

Usually, simply measuring input and output magnitudes we are able to know the effect of the
physical envorinment, and therefore, to define mathematically the systems as:

y(t) = F(x(t))

The aim of the Signal and Systems Theory is to represent mathematically the physical
phenomena by defining the systems and determining the input and output signals.
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Introduction Signal and Systems

Introduction

Signals and Systems (II)

Signal is a mathematical function of one or more independent variables, which contains
information about a physical magnitude. As a mathematical function is usually represented
as: u = f (t), being time the independent variable. Some examples are:

Signal one-dimensional. Involving one single independent variable, u = f (t): speech recordings,
stock market series, electrocardiogram, ECG.
Signal two-dimensional. Involving two independent variables, u = f (x, y): gray-scale images.
Signal three-dimensional. Involving three independent variables, u = f (x, y, t): video.

System is the mathematical abstraction that represent a device (equipment) that transform
an input signal (the inpunt signal cause the system to respond) into an output signal (is the
response of the system)

Signals are mathematical inputs acting as a: input, output or internal signal, that the systems
process or produce.

For example, in a electric circuit, voltages and currents through the elements of the circuit, as
a function of time, are signals; whereas the whole circuit is the system itself.
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Introduction Signal and Systems

Introduction

Examples of signals and systems (I)

Signal and systems concepts arise in many fields: communications, aeronautics, circuit
design, biomedical engineering, power energy...

Signals are used to represent physical magnitudes: speech signal represents acoustic
pressure variations, ECG signal represents myocardial cellular electric currents, or the digital
signal used in radio communications.

Systems are used to represent the means that process, distort or integrate signals: e.g.
microphone, muscles in human body, atomosphere...

5 / 59



Introduction Signal and Systems

Introduction

Signals and Systems examples (II)
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Introduction Signal and Systems

Introduction

Signals and Systems examples (III)

7 / 59



Introduction Continuous and Discrete Time

Introduction

Continuous and Discrete time (I)

Continuous time signals: the independent variable is continuous (real in math sense), and
thus these signals are defined for a continuum of values.

x(t), t ∈ R

Discrete time signals: they are defined only at discrete times, and consequently, for these
signals, the independent variable takes on only a discrete set of values (integers in math
sense). Sometime, they are called discrete time sequences, or sequences, for short.

x[n], n ∈ Z
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Properties of signals Real and Complex Signals

Properties of signals

Real and Complex signals (I)

A signal, x(t) is real if its value is a real number. x(t) : R→ R.

For example, x(t) = t2, or x(t) = 3.

A signal, z(t) is complex if its value is a complex number. z(t) : R→ C.

For example, x(t) = cos(2t) + jsen(5t), or x(t) =
√

t.

To graphically represent a real signal we can use one graph. However, to represent a complex
signal we’ll need two separate graphs.
Remember that a complex signal can be in either rectangular form or polar form:

Rectangular form: real and imaginary part:

x (t) = <{x (t)}+ j={x (t)} = a (t) + jb (t)

Magnitude and argument (modulus and phase)):

x (t) = |x (t)| ej∠{x(t)}
= |x (t)|∠{x(t)}

Remember: It is very important to be (very) familiar with Euler’s Identity and manipulations
with complex numbers.

ρejφ = ρ cos(φ) + jρ sin(φ)
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Properties of signals Real and Complex Signals

Properties of signals

Real and Complex signals (II)

Complex conjugate of a signal:

x∗ (t) = <{x (t)} − j={x (t)} = a (t)− jb (t)

Real and imaginary parts can be obtained as:

<{x (t)} =
1
2

[x (t) + x∗ (t)] ; ={x (t)} =
1
2j

[x (t)− x∗ (t)]

The magnitude and argument can be obtained as:

|x (t)|2 = x (t) · x∗ (t) = (<{x (t)})2 + (={x (t)})2

∠{x (t)} = arc tg
={x (t)}
<{x (t)}

Questions

2 (∗)Compute and represent real and imaginary part, and magnitude and argument:
x1(t) = cos(πt) + j sen(πt).
x2(t) =

√
t.

x3(t) = e−2te−j2t .
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Properties of signals Symmetry

Properties of signals

Symmetry in real signals

A real signal is even if it is identical with its reflection about the origin, i.e. x(t) = x(−t).

For example, x(t) = t2, or x(t) = cos(πt), are even signals.

A real signal is odd if it is antisymmetric with its reflection about the origin, i.e., x(t) = −x(−t)

For example x(t) = t, x(t) = sin(t), are odd signals.

There are signals that have no symmetry, but any signal can be broken into a sum of two
signals, one of which is even and one of which is odd.

x(t) = xe(t) + xo(t)

Even and odd parts can be obtained as:

xe(t) =
1
2

[x(t) + x(−t)]

xo(t) =
1
2

[x(t)− x(−t)]
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Properties of signals Symmetry

Properties of signlas

Questions

3 (∗)Study the symmetry of:
1 x(t) = sen(πt) .
2 y(t) = cos(2πt).
3 z(t) = e−αt , with α ∈ R.

4 (∗)Find the even and odd components of
the previous signlas

5 (∗)Find the even and odd component of
the signal in Figure.
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Properties of signals Symmetry

Propoerties of signals

Symmetry in complex signals

Hermitian symmetry. A complex signal is hermitian when is conjugate symmetric with its
reflection about the origin, i.e., x(t) = x∗(−t).

For example, x(t) = ejt and x(t) = j sin (t) are hermitian.

Additionally:

If x(t) is hermitian⇒ <{x(t)} is even ={x(t)} is odd.
If x(t) is hermitian⇒ |x(t)| is even and ∠ {x(t)} is odd.

Antihermitian symemtry. A complex signal is antihermitian when is antisymmetryc whith its
reflection about the origin, i.e., x(t) = −x∗(−t).

For example, x(t) = t + j and x(t) = j cos(t) are antihermitian.

Every complex signal has two components: a hermitian part and an antihermitian part, that
is,

x(t) = xh(t) + xa(t)

Hermitian and antihermitian components can be computed as:

xh(t) =
1
2

[x(t) + x∗(−t)]; xa(t) =
1
2

[x(t)− x∗(−t)]
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Properties of signals Symmetry

Properties of Signals

Questions

6 Find the hermitian and anti hermitian components:
1 x(t) = cos(ω0t) + j sin(ω0t).
2 y(t) = e−2te5jt .

7 Show that:
1 if x(t) is hermitian⇒ <{x(t)} is even and ={x(t)} is odd.
2 if x(t) is hermitian⇒ |x(t)| is even and ∠ {x(t)} is odd.

8 Study the symmetries <{x(t)}, ={x(t)}, |x(t)| y ∠ {x(t)}, when x(t) is a complex
antihermitian signal.
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Properties of signals Periodicity

Properties of signals

Periodicity

A signal is said to be periodic if we can find a constant time interval T, so taht the values of
the signal are repetead every T. This time interval, T is called period.

x(t) is periodic⇔ ∃ T > 0, T ∈ R so that x(t) = x(t + T) ∀t

Fundamental period

If x(t) is periodic with period T, it is also periodic with periods 2T, 3T, . . ..

We call fundamental period, T0, to the smallest value of T for which the equation
x(t) = x(t + T) holds.
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Properties of signals Periodicity

Properties of Signals

Example: Periodic Signals

We want to find out if x(t) = cos( 2π
5 t) is a periodic signal. ¿∃T such that x(t) = x(t + T) ∀t?

To answer, we have to find x(t + T):

x(t + T) = cos

(
2π
5

(t + T)

)
= cos

(
2π
5

t +
2π
5

T
)

=

= cos

(
2π
5

t
)

cos

(
2π
5

T
)
− sen

(
2π
5

t
)

sen

(
2π
5

T
)

Now, we need to choose an appropriate T, so that the previous signal is equivalent to x(t),
therefore:

cos

(
2π
5

T
)

= 1, sen

(
2π
5

T
)

= 0

Thereby, every T = 5 k, with k = 1, 2, . . . is a valid periodof the signal x(t). Thus, we can
assure that the signal is periodic.
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Properties of signals Periodicity

Properties of Signals

Questions

9 Show that if x1(t) y x2(t) are periodic signlas with period T0, then the signal y(t) = x1(t) + x2(t)
is also periodic. ¿Which is its period?

10 Show that if x1(t) = x1(t + T1) y x2(t) = x(t + T2) holds, then the signal y(t) = x1(t) + x2(t) is
periodic. ¿Which is its period?

Questions

11 (∗)Study if the following signals are prediocis, if so, find their periods.

x1(t) = cos (ω0t)
x2(t) = sin

(
ω0t + 1

2

)
x3(t) = ejω0 t

x4(t) = cos (10πt)
x5(t) = sin (10πt) + cos (20πt)
x6(t) = sin (10πt) + cos (20t)
x7(t) = sin (10πt) cos (20πt)
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Properties of signals Periodicity

Properties of Signals

Example: periodic and non periodic signals
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Properties of signals Periodicity

Properties of Signals

Example: periodic and non periodic signals
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Properties of signals Average value

Properties of Signals

Average value of a signal in an interval

We want to characterize a signal with different measurements within an interval, such as:
avera value, average power or energy.

Any of the following measurements can be computed on an interval or on the whole signal.

To define a time interval we need to specify the begin (tB) and the end (tE) of the interval:
(tB, tE). This can also be defined as an interval centered at t0 with duration T, or the interval
[T, t0].

Average value in a finite time interval (I)

area =

∫ tf

ti
x(t)dt = m · T

m =
area

T
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Properties of signals Average value

Properties of Signals

Average value in a finite time interval (II)

The average value of a signal, also known as DC level (Direc Current) in a finite time interval,
can be computed as:

〈x(t)〉[T,t0] =
1
T

∫ t0+ T
2

t0− T
2

x(τ)dτ ; 〈x(t)〉(ti,tf )
=

1
tf − ti

∫ tf

ti
x(τ)dτ

Total Average Value

The Total Average Value of signal x(t) is defined as::

m∞ = 〈x(t)〉 = limT→∞

{
1

2T

∫ T

−T
x(τ)dτ

}
Total Average Value for periodic Signals. Since in periodic signals x(t) = x(t + T0), the
average value in a period would be the same as the total average value (−∞,∞), therefore,
is easier to compute:

m∞ = 〈x(t)〉 =
1
T0

∫
〈T0〉

x(τ)dτ
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Properties of signals Average value

Properties of Signals

Questions

12 (∗)Find the average value of the following signals:

x1(t) = e−t , calcular 〈x1(t)〉(2,3).

x2(t) = t2, calcular 〈x2(t)〉(1,3).

x3(t) = | sin (t)|, calcular 〈x3(t)〉.
x4(t) = cos(πt

2 ), calcular 〈x4(t)〉.

x5(t) = u(t), calcular 〈x5(t)〉(−1,3)
x6(t) = u(t), calcular 〈x6(t)〉

x7(t) = ej
(

5πt− 1
2

)
, calcular 〈x7(t)〉(−1,3).

x8(t) = ej
(

5πt− 1
2

)
, calcular 〈x8(t)〉.

23 / 59



Properties of signals Power and Energy

Properties of Signals

Power and Energy in Signals

Power and energy are concepts used in physics, for example, in circuits. We are going to
define, using the analogy, abstract concepts of Power and Energy for signals.

We are going to define the power consumed by a reference resistor R = 1Ω. We can think
that x(t) is either v(t) or i(t). The instantaneous power p(t) is defines as:

p(t) = |v(t)|2/R = |i(t)|2R

The total energy E and power P consumption is:

E =

∫ ∞
−∞

i2(t)dt joules

P = ĺım
T→∞

1
T

∫ T/2

−T/2
i2(t)dt watts
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Properties of signals Power and Energy

Properties of Signals

Power of a Signal

The instantaneous power os a signal is defined as the square magnitude of the signalLa
potencia instantánea de una señal se define como el módulo al

px (t) = |x (t) |2

The avearge power in a given interval of length T, (t1, t2):

PT = 〈px(t)〉(t1,t2) =
1
T

∫ t2

t1
px(τ)dτ =

1
T

∫ tf

ti
|x(τ)|2dτ

The total average power:

P∞ = 〈px(t)〉 = ĺım
T→∞

{
1

2T

∫ T

−T
px(τ)dτ

}
= ĺım

T→∞

{
1

2T

∫ T

−T
|x(τ)|2dτ

}
.

If the signal is periodic, period T0, the average power is computed as:

P∞ = 〈px(t)〉 =
1
T0

∫
〈T0〉

px(τ)dτ =
1
T0

∫
〈T0〉
|x(τ)|2dτ
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Properties of signals Power and Energy

Properties of Signals

Energy of a signal

The energy in circuits can be computed as

px(t) =
dw(t)

dt
⇒ w(t) =

∫ t

−∞
px(τ)dτ

Therefore, the total energy can be computed as:

E∞ = ĺım
T→∞

w(t) =

∫ +∞

−∞
|x(τ)|2dτ

.

Classification of signals regarding energy and power

Signals with finite energyy 0 < E∞ <∞.

For example, signals with limited duration.

Signals with finite average power 0 < P∞ <∞.

For example, periodic signals.

Questions

13 Show that any signal with finite energy has zero average power, and also that any signal with
finite average power has infinite energy. 26 / 59
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Properties of signals Power and Energy

Properties of Signals

Examples: Signals with finite average power and signals with finite energy.

Questiones

14 (∗)Find the average power and eneryg for each of the following signals.

x1(t) = u(t)
x2(t) = e−2t · u(t)
x3(t) = ej(2t+π

4 )

x4(t) = cos(t)
x5(t) = ( 1

2 )t · u(t)
x6(t) = (3 + 2j)u(t)
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Transformations Shift, time-reversal and scaling

Transformations of signals

Transformations of the Independent Variable

There are 3 basic transformations of the independent variable of a signals:
Shifting: y(t) = x(t ± a), with a > 0.
Scaling: y(t) = x(at), with a > 0.
Time-reversal: y(t) = x(−t).
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Transformations Shift, time-reversal and scaling

Transformations of signals

Shift

Let’s be a ∈ R+. the result of add or subtract a to the independent variable is a new shifted
signal, y(t) = x(t ± a).

y1(t) = x(t − a) is a delayed version of x(t) shifted to the right.
y2(t) = x(t + a) is an advanced version of x(t) shifted to the left.

If x(t) is a song of . . ., x(t − a) means you are going to play the song some time ahead,
whereas x(t + a) means that you have already played the song.

Time reversal

Multiply by -1 the independent variable (sign change) results in a new signal y(t) = x(−t),
which is the same as the original but reflected around t = 0. This is the song played backward.

Scaling

Let be a ∈ R+. Signal y1(t) = x(at), when a > 1, is an accelerated version of x(t), while, with
a < 1, is a slower version.

For example, if x(t) is a song, x(2t) is the song played at twice the speed, and x(t/2) is played
at half-speed.

Note that scaling in continuous time does not implyt lost of information. We can always
recover original signal from a scaling one, using a new scaling on the transformed signal
a′ = 1/a.
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Transformations Practical advices

Transformation of Signals

Practical advices

Whener you have several transformations, it is easier (commonly) to start by the time shifting.

You are only transforming the independent variable.

It is always a good advice to use intermediate signals, plotting them and keeping the
analytical expressions.

At the end, evaluate always the result in known values of the independent variable

y(t) = x(αt + β)⇒ y(t)
∣∣∣∣
t∗

Where t∗ is an easy value where check the transformation.

Example

we want v(t) = x(at + b).
Start with shifting:

z(t) = x(t + b)

s(t) = z(at) = x(at + b) = v(t) (OK)

Start with scaling:
z(t) = x(at)

r(t) = z(t + b) = x(at + ab) 6= v(t) (!!)
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Transformations Practical advices

Transformation of signals

Questions

15 How the order affects v(t) = x(−t + b)? ¿How the order affectsx(−at)?

16 Given 15, which is the order to follow when we have transformation of the independent
variable?

Transformations of the dependent variable

Let be a a scalar, then y(t) = ax(t) is an amplified (a > 1) or reduced version (0 < a < 1) of
the signal x(t) ∀t .

y(t) = x(t) + a is a new signal that just adds the quantity a to every valued of the signal s(t)

y(t) = −x(t) is just change the sign of every value of the signal x[t].
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Transformations Practical advices

Transformation on Signals

Questions

17 (∗)Let be x(t) the signal in the Figure. Sketch and label properly the following transformations:

y1(t) = x(−t + 1)

y2(t) = x(2t + 3)

y3(t) = x
( 3

2 t + 1
)

y4(t) = −2 · x
(
− t

4 + 1
)

+ 3
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Basic Signals

Basic Signals

Why we need basic signals

We are going to study different simple and basic signals that are going to be use as building
blocks to compose more complex signals.
Why is that?

They are simple signals, so their properties can be studied easily.
Almost any signal can be composed as a linear combination of these building blocks.
The transformation of a simple signal by a system is easy to study.
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Basic Signals Continuous-time Complex exponential signal

Basic Signals

Continuous-time complex exponential (I)

The more general expression for a continuous-time complex exponential is:

x(t) = C · eat

where C, a ∈ C, dados por C = |C| · ejφ y a = σ + jΩ. Therefore,

x(t) = |C|ejφeσtejΩt = |C|eσtej(Ωt+φ) = |C|eσt (cos(Ωt + φ) + j sin(Ωt + φ))

Depending upon the values of these parameters the complex exponential can exhibit different
characteristics.

Question

18 Find the magnitude, phase, and real and imaginary partos of x(t), givne by the
continuous-time complex exponential. What is the magnitude and phase of x(t) at t = 0, and
at t = 1, and at t = −π? 36 / 59
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Basic Signals Continuous-time Complex exponential signal

Basic Signals

Continuous-time complex exponential (II)

Real exponential when C, a ∈ R. That is, x(t) = Ceσt.
It can be a growing exponential(σ > 0) or a decaying exponential (σ < 0).

Purely imaginary exponentials, when C ∈ C but a = jΩ is purely imaginary. In that case,

x(t) = CejΩt = |C| (cos(Ωt + φ) + j sin(Ωt + φ))

It is very easy to establish the relationship between complex exponentias an sinusoidal signals:

ejθ
= cos θ + j sin θ; cos θ =

1
2

(
ejθ

+ e−jθ
)

; sin θ =
1
2j

(
ejθ − e−jθ

)
therefore

cos Ωt =
1
2

(
ejΩt

+ e−jΩt
)

; sin Ωt =
1
2j

(
ejΩt − e−jΩt

)
In a purely imaginary exponentail (or in a sinusoidal signal for that matter) the frequency can grow
infinitely.
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Basic Signals Continuous-time Complex exponential signal

Basic Signals

Questions

19 Let be the following sinusoidal signals x(t) = 100 cos (400πt + 60o).
1 What is the maximum amplitude of the signal?
2 What is the frequency in Herz? What is the frequency in rad/sg?
3 What is the phase in radianes? What is the phase in degrees?
4 What is the period in milliseconds?
5 What is the first time, after t = 0, that x = 100?

20 Show that a purely imaginary exponential signal is always periodic.

21 (∗)Find whether the following signals are periodic or not. If periodic, find the fundamental
period.eriódica, especifique su periodo fundamental.

x1(t) = j · e10jt

x2(t) = e(−1+j)t

x3(t) = 2 cos(10t + 1)− sin(4t − 1)

x4(t) = 1 + ej 4πt
7 − ej 2πt

5

x5(t) = [cos(2t − π
3 )]2

22 (∗)Sketch the following signals and indicate, using the plot, whether they are periodic or not.
x0(t) = u(t)− u(t − 1)

x1(t) =
∑2

k=−1 x0(t − 2k)
x2(t) =

∑∞
k=−∞ x0(t − 2k)
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Basic Signals

Continuous-Time Unint Step

The continuous-time unit step is defined
as follows::

u(t) =

{
0, t < 0,
1, t > 0

Note that the unit step is discontinuous at
t = 0. To solve this, we define u(t) using an
approximation signal:

u∆(t) =


0, t < 0

t
∆
, 0 ≤ t ≤ ∆

1, t > ∆

Therefore, u∆(t) is a continuous approximation of the unit step and

u(t) = ĺım
∆→0

u∆(t)
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Basic Signals

Continuous-Time Unit Impulse

Also knwon as Dirac delta:

δ(t) =

{
∞, t = 0
0, t 6= 0

but area equal to 1.

We can define unit impulse as the first derivative of the unit step:

δ(t) =
du(t)

dt

But this arise some problems, since u(t) is discontinuous at t = 0.

We can use the approximation of the unit step, u∆(t), for which the
deritave is well defined:

δ∆(t) =
du∆(t)

dt
Note that δ∆(t) is a short pulse, of duration ∆ and with unit area for any
value of ∆. As ∆→ 0, δ∆(t) becomes narrower and higher, maintining
its unit are. Therefore, at the limit:

δ(t) = ĺım
∆→0

δ∆(t)
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Basic Signals Continuous-time Unite Impulse

Basic Signals

Properties of the unit impulse

1 The area under the function is 1: ∫ +∞

−∞
δ(τ)dτ = 1

2 Scaling property:

δ(at) =
1
|a|
δ(t)

3 Even property
δ(−t) = δ(t)

4 Sampling property
x(t)δ(t) = x(0)δ(t)

5 Sampling property (ii)
x(t)δ(t − t0) = x(t0)δ(t − t0)

6 Sampling property (iii)

x(t0) =

∫ ∞
−∞

x(τ)δ(t0 − τ)dτ

7 Therefore, any continuous-time signal can be decompose as a (infinte) linear combination of shifted and
scaled unit impulses

x(t) =

∫ +∞

−∞
x(τ)δ(t − τ)dτ
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Basic Signals Continuous-time Unite Impulse

Basic Signals

Questions

27 Show, and discuss, the meaning of the properties 4. 5 and 6.

28 Show that the area under the signal x(t) = Aδ(t) is equal to A. Hint: Use the approximation
δ∆(t).
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Basic Signals

Relationship between unit step and unit impulse (I)

The relationship between unit step and unit impulse allows to deal with derivative of discontinuities

Running integral definition:

u(t) =

∫ t

−∞
δ(τ)dτ

43 / 59

lucamartino
Highlight



Basic Signals Continuous-time Unite Impulse

Basic Signals

Relationship between unit step and unit impulse (II)

We can use an alternative definition:

u(t) =

∫ t

−∞
δ(τ)dτ =

∫ 0

∞
δ(t − σ)(−dσ)

with σ = t − τ

Or equivanlently:

u(t) =

∫ ∞
0

δ(t − σ)dσ
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Basic Signals Continuous-time Unite Impulse

Basic Signals

Relationship between unit step and unit impulse (III)

Derivative of discontinuites

δ(t) =
du(t)

dt
⇒ u(t) =

∫ t

−∞
δ(τ)dτ
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Basic Signals

Questions

29 (∗)Find and sketch the running integral of:
x1(t) = δ(t)− δ(t − 2)

x2(t) = −δ(t + 3) + δ(t − 1) + 3δ(t − 3)

30 (∗)Find and sketch the derivative of:
x1(t) = u(t + 3)− 2u(t + 3) + u(t + 6)

x2(t) = 3u(t)− 2.5u(t − 3)

x3(t) = u(t + 1) + etu(t − 3)− 2u(t)
x4(t) = sin(πt)u(−t)

31 Find the analytical expression and sketch
the derivative of x(t). Decompose x(t) as a
sum of unit steps.

46 / 59



Basic Signals More basic signals

Basic Signals

More Basic Signals

Rectangular Pulse :

Π
( t

T

)
=

{
1; − T

2 ≤ t < + T
2

0; otherwise

Sinc (cardinal sine):

sinc
( t

T

)
=

sin
(
πt
T

)
πt
T

Triangular Pulse:

Λ
( t

T

)
=


t
T + 1; −T ≤ t ≤ 0
− t

T + 1; 0 ≤ t ≤ +T
0; resto
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Basic Signals More basic signals

Basic Signals

Questions

23 (∗)Express x(t) = Π(t) as a sum of shifted and scaled unit steps.

24 (∗)Express x(t) = u(t) as a sum of shifted and scaled rectangular pulses.

25 Sketch the rectangular pulse, the sinc and the triangular pulse for T = 1 and T = 5.
26 Sketch the following signals.

x1(t) =
∑∞

k=−∞ (2Λ(t − 5k)− Λ(t − 2− 5k))
x2(t) =

∑∞
k=−∞ (Π(t − 5k)− Π(t − 1− 5k))

x3(t) = sinc(t − 5π)
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Problems

Problems

Problem 1 (∗)

Express the following signals as complex exponentials:
1 x(t) = 2 cos

(
2π60t + π

4

)
.

2 x(t) = 2 cos
(
t + π

6

)
+ 4 sen

(
t − π

3

)
.

[Sol: (a) x(t) = ej2π60tejπ4 + e−j2π60te−jπ4 . (b) x(t) = −e
j
(

t+π
6

)
− e
−j
(

t+π
6

)
]

Problem 2 (∗)

Fing the magnitude and phase (as a function of t), as well as the average power and energy, for
the following signals:

1 x(t) = ej(2t+π
4 ).

2 x(t) = cos (t).
3 x(t) = e−2tu(t).

[Sol: (a) P∞ = 1, E∞ =∞. (b) P∞ = 1/2, E∞ =∞. (c) P∞ = 0, E∞ = 1/4. ]
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Problems

Problems

Problem 3 (∗)

Let be x(t) a signal with x(t) = 0 para t < 3. For each of the following signals, find the values of t
that makes x(t) = 0.

1 x(1− t).
2 x(t/3).
3 x(3t).

4 x(1− t) + x(2− t).
5 x(1− t) · x(2− t).

[Sol: (a) t > −2. (b) t < 9. (c) t < 1. (d) t > −1. (e) t > −2. ]

Problem 4

Find the real part of the following signals and express them in the form Ae−αt cosωt + φ, where
A, α, ω, φ are real numbers, with A > 0 and −π ≤ φ ≤ π.

1 x(t) = −2.
2 x(t) =

√
2ejπ/4 cos (3t + 2π).

3 x(t) = e−t sin (3t + π).
4 x(t) = je(−2+j100)t.

[Sol: (a) A = 2, α = 0, ω = 0, φ = π. (b) A = 1, α = 0, ω = 3, φ = 0.
(c) A = 1, α = 1, ω = 3, φ = π/2. (d) A = 1, α = 2, ω = 100, φ = π/2. ]
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Problems

Problems

Problem 5 (∗)

Given the signals x(t) and h(t), sketch each of the following signals.

1 h(t + 3).
2 h

( t
2 − 2

)
.

3 h(1− 2t).
4 4h

( t
4

)
.

5 h
( t

2

)
δ(t + 1).

6 h(t)[u(t + 1)− u(t − 1)].
7 x(t)h(t + 1).
8 x(t)h(−t).
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Problems

Problems

Problem 6

Determine whether the following signals are periodic. If they are, find the period.

1 x(t) = 2 cos
(
3t + π

4

)
.

2 x(t) = ej(πt−1).
3 x(t) = 2 cos

(
π
4 t
)

+ sin
(
π
8 t
)
− 2 cos

(
π
2 t + π

6

)
.

[Sol: (a) T = 2π/3s. (b) T = 2s. (c) T = 16s. ]

Problem 7 (∗)

Find the derivative of the following signals:

1 x(t) =


0, t < 1
2, 1 ≤ t < 2
−1, 2 ≤ t < 4
1, t ≥ 4

.
2 x(t) = u(t+2)−u(t−2).
3 x(t) = ejπtu(t).
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Problems

Problems

Problem 8 (∗)

Integrate the following signals computing y(t) =
∫ t
−∞ x(τ)dτ :

1 x(t) = δ(t + 2)− δ(t − 2).
2 x(t) = u(t + 2)− u(t − 2).
3 x(t) = ejπtu(t).

[Sol: (a) y(t) = u(t + 2)− u(t − 2). (b) y(t) = (t + 2)u(t + 2) + (2− t)u(t − 2). (c) y(t) = − j
π

(
ejπt − 1

)
u(t). ]

Problem 9

Let be x(t) = δ(t + 2)− δ(t − 2). Determine the total energy of y(t) =
∫ t
−∞ x(τ)dτ .

[Sol: E∞ = 4 J.]

56 / 59



Problems

Problems

Problem 10 (∗)

Let be a periodic signal with period T = 2, given by:

x(t) =

{
1, 0 ≤ t < 1
−2, 1 ≤ t < 2

The derivative of this signal is related with the impulse train with period 2 sec, given by:

g(t) =

∞∑
k=−∞

δ(t − 2k)

Determine the values A1, t1,A2, y t2, so that

dx(t)
dt

= A1g(t − t1) + A2g(t − t2)

[Sol: A1 = 3, t1 = 0, A2 = −3, t2 = 1. ]
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Problems

Problems

Problema 11

Sketch the even and ood part of the following signals:

Problem 12 (∗)

Show that δ(2t) = 1
2 δ(t).
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Problems

Problems

Problem 13 (∗)

We define the function Φxy(t) of two signals x(t) and y(t) as:

Φxy(t) =

∫ ∞
−∞

x(t + τ)y(τ)dτ

What is the relationship between Φxy(t) and Φyx(t)?

Let’s suppose that x(t) is periodic. Is also periodic Φxx(t) ? If so, what is the period?

Find the odd part of Φxx(t).

Problem 14 (∗)

Show that
∫∞
−∞ x2(t)dt =

∫∞
−∞ x2

par(t)dt +
∫∞
−∞ x2

impar(t)dt.
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