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Independent Doubly Adaptive Rejection Metropolis
Sampling Within Gibbs Sampling

Luca Martino, Jesse Read, and David Luengo

Abstract—Bayesian methods have become very popular in
signal processing lately, even though performing exact Bayesian
inference is often unfeasible due to the lack of analytical expres-
sions for optimal Bayesian estimators. In order to overcome this
problem, Monte Carlo (MC) techniques are frequently used.
Several classes of MC schemes have been developed, including
Markov Chain Monte Carlo (MCMC) methods, particle filters
and population Monte Carlo approaches. In this paper, we con-
centrate on the Gibbs-type approach, where automatic and fast
samplers are needed to draw from univariate (full-conditional)
densities. The Adaptive Rejection Metropolis Sampling (ARMS)
technique is widely used within Gibbs sampling, but suffers from
an important drawback: an incomplete adaptation of the proposal
in some cases. In this work, we propose an alternative adaptive
MCMC algorithm that overcomes this limitation,
speeding up the convergence of the chain to the target, allowing
us to simplify the construction of the sequence of proposals, and
thus reducing the computational cost of the entire algorithm. Note
that, although has been developed as an extremely
efficient MCMC-within-Gibbs sampler, it also provides an ex-
cellent performance as a stand-alone algorithm when sampling
from univariate distributions. In this case, the convergence of the
proposal to the target is proved and a bound on the complexity of
the proposal is provided. Numerical results, both for univariate

and multivariate
distributions, show that out-

performs ARMS and other classical techniques, providing a
correlation among samples close to zero.

Index Terms—Adaptive MCMC, adaptive rejection Metropolis
sampling, bayesian inference, Gibbs sampler, metropolis-hastings
within Gibbs sampling, monte carlo methods.
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I. INTRODUCTION

B AYESIAN methods and their implementations by means
of sophisticated Monte Carlo (MC) techniques [1], [2]

have become very popular in signal processing over the last two
decades [3]–[7]. Indeed, in many problems of practical interest
these techniques demand procedures for sampling from prob-
ability distributions with non-standard forms, such as Markov
chain Monte Carlo (MCMC) methods [4], [8], particle filters
[6], [9] or population Monte Carlo approaches [10]. In partic-
ular, MCMC techniques generate samples from a target prob-
ability density function (pdf) by drawing from a simpler pro-
posal pdf [1], [11]. The two best known MCMC approaches
are the Metropolis-Hastings (MH) and the Gibbs sampling al-
gorithms [2]. The Gibbs sampler is extensively used in signal
processing [3], [7] and machine learning [12], [13] to generate
samples from multi-dimensional target densities, drawing each
component from the corresponding univariate full-conditional
density.
The key point for the successful application of Gibbs sam-

pling is being able to draw efficiently from these univariate pdfs.
Otherwise, generic universal sampling techniques, like rejec-
tion sampling (RS) or MH-type algorithms, are used within the
Gibbs sampler to draw from complicated full-conditionals. In
the first case, samples generated from the RS algorithm are inde-
pendent, but the acceptance rate can be very low. In order to in-
crease the acceptance rate, automatic and self-tuning samplers,
such as adaptive rejection sampling (ARS) [14], [15], have been
developed to draw efficiently from univariate target densities.
The samples generated by ARS are independent and the pro-
posal always converges to the true shape of the target, but ARS
can only be applied for log-concave (i.e., unimodal) targets.
Several generalizations of ARS have been proposed [16]–[18],
but they are still only able to handle very specific classes of pdfs.
In the second case, we have an MCMC-inside-another-MCMC
approach. In the so calledMH-within-Gibbs approach, only one
MH step is often performedwithin eachGibbs iteration [2], [11].
This hybrid approach preserves the ergodicity of the Gibbs sam-
pler [2], [19], and achieves a satisfactory performance in many
cases. For this reason, it has been extensively used in signal pro-
cessing applications [20]–[22]. On the other hand, several au-
thors have noticed that using a single MH step for the internal
MCMC is not always the best solution (cf. [23]).
Fig. 1 provides a graphical illustration of the previous discus-

sion. The best scenario occurs when efficient and direct sam-
plers for each of the full-conditionals are available, whereas the
worst scenario corresponds to the highly correlated samples (as
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Fig. 1. Performance of a Gibbs sampler depending on the technique used for
drawing from the full-conditionals.

typically generated by the MH algorithm using only
steps per Gibbs iteration unless the proposal is specifically tai-
lored to the target).1 Hence, we depict “MH with ” to
the right of “Adaptive MCMC”.2 In the middle, we have the
adaptive MCMC algorithms and the MH algorithm with
steps per Gibbs iteration. On the one hand, note that there are
several types of adaptive algorithms with different levels of per-
formance. The better the adaptation provided by an adaptive
MCMC algorithm (in terms of converging to the target), the
more independent the samples generated, and thus the better its
performance and the closer to the left (i.e., the ideal situation).
On the other hand, using of a larger value of for the MH al-
gorithm, there is more probability of avoiding the “burn-in” pe-
riod so that the last sample be distributed as the full-conditional.
Thus, the case is closer to the ideal situation. However,
unless the proposal is very well tailored to the target, a properly
designed adaptive MCMC algorithm should provide less corre-
lated samples than a standard MH algorithm.
Therefore, some authors have increased the number of

MH transitions per iteration of the Gibbs sampler
[25]–[27], whereas other authors have suggested alternative
approaches for sampling from the full conditionals [28]–[32].
Indeed, this was one of the main motivations for the develop-
ment of the Adaptive Rejection Metropolis Sampling (ARMS)
algorithm by Gilks et al. [28], and is also the basis for our own
work. ARMS combines the ARS and MH approaches [28], [33]
in order to obtain a universal sampler that builds a self-tuning
proposal (i.e., a proposal automatically constructed and adapted
to the target). Unfortunately, the samples generated by ARMS
are correlated (unlike ARS, which returns i.i.d. samples).
However, due to its robustness and good performance, it has
often been preferred to other MCMC techniques within Gibbs
and it has been applied in many inference problems (cf. [23],
[34], [35]).

1Note that Fig. 1 does not take into account the computational cost. If an exact
sampler requires a large increase in computation time, then an approximate so-
lution may be preferable. However, an exact or asymptotically exact sampler
should always be preferred to an approximate one when the price to be paid is
just a moderate increase in the computational cost.

2Remarkably, some authors have found that a “bad” choice of the proposal
function in the MH step (i.e., a poor approximation of the full conditional) can
improve the performance of the Gibbs sampler [2], [24]. This is possibly due to
the fact that the acceptance rate in the MH step (lower than 1) induces an “acci-
dental” random scan of the components of the target pdf in the Gibbs sampler,
which can improve the performance in some cases. In this work, we only focus
on the deterministic scan. However, all the internal techniques discussed later
can also be applied within a random scan Gibbs scheme.

In this paper, we show that the adaptation mechanism of
ARMS can be incomplete: in some cases the proposal does not
converge to the target in certain areas or even in the whole do-
main. This is an important drawback, as the correlation among
the samples generated depends on the discrepancy between the
proposal and the target pdfs [2], [36]. In order to solve this
issue, we present an enhancement of ARMS which ensures that
the sequence of proposals converges to the target (as in ARS
and unlike in ARMS), while maintaining the computational
cost bounded (exactly as in ARS and ARMS) with the addition
of a simple control test. This improvement yields a substantial
reduction of the correlation (providing asymptotically indepen-
dent samples) and a lower mean squared error (MSE) in the
estimations. We call the novel approach independent

, since the proposal is independent from the current
state, and the emphasizes the fact that we incorporate an
additional adaptive control. Furthermore, the new strategy al-
lows us to decouple completely the adaptation mechanism from
the proposal construction (unlike ARMS, whose performance
depends critically on the proposal building approach), thus al-
lowing us to introduce several examples of simpler construction
procedures. Hence, the resulting algorithm is faster and more
efficient than standard ARMS and other techniques, as shown
in the numerical simulations.3 Finally, we would like to remark
that, although we have concentrated on the use of
as a stand-alone algorithm and within Gibbs sampling, it can
also be directly applied within any other MC algorithm that
requires sampling from conditional distributions, such as the
hit-and-run algorithm [38] or adaptive direction sampling [39].
The paper is structured as follows. First of all, Section II in-

troduces the notation and provides some background on Gibbs
sampling, ARS and ARMS. The important structural limi-
tation of ARMS is also discussed at the end of this section.
Then, Section III describes the novel algorithm, whereas
Section IV provides numerical results, including the use of

as a stand-alone algorithm and within a Gibbs
sampler. Section V shows the conclusions and future lines.
Finally, several important theoretical results are proved in the
Appendices.

II. PROBLEM STATEMENT AND BACKGROUND

A. Gibbs Sampling

Bayesian inference often requires drawing samples from
complicated multivariate posterior pdfs, with

. Typical examples in signal processing include model
selection, blind equalization and source separation, or spectral
analysis [4], [7]. A common approach, when direct sampling
from is unfeasible, is using a Gibbs sampler [2]. At
the -th iteration, a Gibbs sampler obtains the -th component

3A preliminary version of this work has been published in [37]. With respect
to that paper, here we discuss the structural limitations of ARMS, we perform a
complete theoretical analysis of the technique, and we provide addi-
tional numerical simulations (including comparisons with other sampling algo-
rithms, drawing samples from a heavy-tailed distribution, and three examples
of the application of within a Gibbs sampler).
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TABLE I
MAIN NOTATION OF THE WORK

of , , drawing from the full conditional of
given all the information available [7], [40], i.e.,

(1)

with the initial vector drawn from the prior, i.e., ,
and (where is the total number of Gibbs
iterations). However, even sampling from (1) can often be com-
plicated. In these cases, a common approach is using another
Monte Carlo technique (e.g., RS or the MH algorithm) within
the Gibbs sampler, drawing candidates from a simpler proposal,

, and accepting or discarding them according to some
appropriate rule. The performance of this approach depends
largely on the choice of . Thus, adaptive strategies, where
the proposal is updated using the previously generated samples,
are usually preferred.
For the sake of simplicity, let us denote the univariate target

pdf (i.e., the full-conditional proposal in (1)) as
for , where is an unnormalized but proper
(i.e., integrable) function, and is the normal-
izing constant. Similarly, the sequence of proposals constructed
by the adaptive algorithm is denoted as for

( is the number of iterations of the adaptive
algorithm), where is again an unnormalized but proper
function, and is the normalizing constant.
Furthermore, we often refer to the unnormalized functions
and (and in general to all unnormalized but proper pdfs)
as densities. Table I summarizes the main notation of this work.
In the following, we review two popular approaches to build

: ARS and ARMS.

B. Adaptive Rejection Sampling (ARS)
If a direct sampling method is not available to draw from a

full-conditional pdf, the best alternative is using the adaptive
rejection sampling (ARS) technique [14], [15]. Let us consider
a set of support points at the -th iteration,

such that , and let us define
and as the tangent line to at for .
Then we can build a piecewise linear (PWL) function,

(2)

Hence, the proposal pdf, , is
formed by exponential pieces in such a way that

TABLE II
ADAPTIVE REJECTION SAMPLING (ARS) ALGORITHM

(and thus ) when is concave (i.e., is
log-concave).
Table II summarizes the ARS algorithm. Note that a new

sample is added to the support set whenever it is rejected in the
RS test. ARS has the important property that the sequence of
proposals always converges to the target pdf. Defining the
distance between and as

(3)

ARS ensures that when . This yields two
important consequences:
1) The acceptance rate,

(4)

tends to one as . Indeed, typically very
quickly and ARS becomes virtually an exact sampler after
a few iterations.

2) The computational cost remains bounded, as the proba-
bility of adding a new support point,

, tends to zero as .

C. Adaptive Rejection Metropolis Sampling (ARMS)
Unfortunately, ARS can only be applied to log-concave target

pdfs (i.e., when is concave). Although several
generalizations of ARS have been proposed (cf. [16]–[18]), they
are still only able to handle very specific classes of pdfs. An al-
ternative option is provided by the adaptive rejectionMetropolis
sampling (ARMS) technique, which combines the ARS method
and the Metropolis-Hastings (MH) algorithm [1], [2]. ARMS is
summarized in Table III. It performs first an RS test, and the
rejected samples are used to improve the proposal pdf, exactly
as in ARS. However, unlike ARS, the samples accepted in the
RS test go through an MH test. The MH step removes the main
limitation of ARS: requiring that . This
allows ARMS to generate samples from a wide variety of target
pdfs, becoming virtually a universal sampler from a theoretical
point of view.
The choice of the proposal construction approach is crit-

ical for the good performance of ARMS [28], as discussed
in Section II-D. Consider again the set of support points

, and let us define the intervals
, for , and
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Fig. 2. Example of a critical structural limitation in the adaptive procedure of ARMS. (a) Construction of using 5 support points, such that
inside . (b)-(c) Adding new support points inside the contiguous intervals the construction of inside ( in Figure (c)) can never change.
(d) The secant line passing through and (solid black line), and the two tangent lines to at and (dashed red lines),
respectively.

TABLE III
ADAPTIVE REJECTION METROPOLIS SAMPLING (ARMS) ALGORITHM

. Moreover, let us denote as the
line passing through and for

. Then, a PWL function is constructed
in ARMS as

,
,
,

,
,
(5)

where

and . Hence, the proposal pdf,
, is again formed by exponential pieces,

as illustrated in Fig. 2.
It is important to remark that the number of linear pieces

that form the proposal with this construction is larger than
in general, since the proposal can be formed by two segments
rather than one in some intervals (e.g., interval in
Fig. 2(c)). The computation of intersection points among these
two segments is also needed. More sophisticated approaches to
build (e.g., using quadratic segments when possible [30])
have been proposed. However, none of them solves the struc-
tural problem of ARMS that is briefly described next.

D. Structural Limitations of ARMS

Unlike ARS, the ARMS algorithm cannot guarantee the
convergence of the sequence of proposals to the target, i.e.,

as in general. In ARMS, the proposal
pdf is updated only when a sample is rejected by the RS
test, something that can only happen when . On
the other hand, when a sample is initially accepted by the RS
test, as it always happens when , the proposal
is never updated. Thus, the satisfactory performance of ARMS
depends on two issues:
a) should be constructed in such a way that

(i.e., ) inside most of the
domain of , so that support points can be added almost
everywhere.

b) The addition of a support point inside an interval must en-
tail a change of the proposal pdf inside other neighbouring
intervals when building . This allows the pro-
posal to improve inside regions where .

These two conditions lead to unnecessarily complex pro-
posal construction schemes. Furthermore, even if the proposal
building approach fulfills these two requirements (as it happens
for the procedure proposed in [28] and described by (5)), the
convergence of to almost everywhere cannot be
guaranteed, due to the fact that support points can never be
added inside regions where . Indeed, inside
some region , where , we might obtain a
sequence of proposals s. t. for an arbitrarily
large value of , or even , i.e., the proposal pdf might
never change inside .
This limitation of the ARMS adaptation scheme can

be illustrated with a simple graphical example. Con-
sider a multi-modal target density, ,
with as shown in Fig. 2(a). Building using
5 support points and the procedure described by (5),
we obtain , as
shown in Fig. 2(a). From (5), we note that

inside this interval.
From Fig. 2(a), we see that
and .
Therefore, inside this interval, and this
situation can never change when new support points are added.
Figs. 2(b) and 2(c) show that we can incorporate new support
points, in Fig. 2(b) and in Fig. 2(c), arbitrarily close to
this interval ( in Fig. 2(a), (b) and in Fig. 2(c)), without
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altering the construction of . Indeed, let us consider the
limit case where two points are incorporated arbitrarily close to

and . In this extreme situation, the secant lines of the adja-
cent intervals become tangent lines, as shown in Fig. 2(d), and
the minimum between the two tangent lines corresponds to the
straight line tangent to , which stays always below the secant
line, , passing through and .
Hence, since adding support points in adjacent intervals does
not improve the construction inside this interval, and support
points can never be added directly inside it (as ),
a very relevant portion of the proposal (containing a mode in
this case) can never be updated, meaning that as

.

III. INDEPENDENT DOUBLY ADAPTIVE REJECTION
METROPOLIS SAMPLING

A. Algorithm Description
Our aim is designing a sequence of self-tuning proposals such

that when as fast as possible. Namely,
we want to obtain an algorithm having a performance as close as
possible to the ARS technique (i.e., ensuring that
as with a bounded computational cost), and the same
range of applicability as the ARMS method (i.e., being a uni-
versal sampler, able to draw samples virtually from any target
pdf). In this section, we describe a simple and extremely ef-
ficient strategy which allows us to achieve these two goals.
The novel scheme ensures the convergence of the chain to the
target distribution and keeps, at the same time, the computa-
tional cost bounded. Furthermore, it allows us to completely de-
couple the adaptation mechanism from the proposal construc-
tion, thus allowing us to consider simpler alternatives for the
latter, as shown in Section III-C.
The newly proposed algorithm is called independent doubly

adaptive rejection Metropolis sampling , with the
emphasizing that we incorporate an additional adaptive step

to improve the proposal pdf w.r.t. ARMS. The algo-
rithm is summarized in Table IV. Initially, proceeds
like ARMS, drawing a sample from the current proposal (step
3), performing an RS test and incorporating rejected samples
to the support set (step 4). Then, initially accepted samples go
through an MH step to determine whether they are finally ac-
cepted or not (step 5.1), as in ARMS. The key improvement
w.r.t. ARMS is the introduction of a new control (step 5.2),
which allows us to add samples (in a controlled way) inside
regions of the domain where . Therefore, the

algorithm guarantees a complete adaptation of the
proposal (i.e., as ) exactly as in ARS
(as shown in Appendix B).4 As a consequence, the correlation
among samples is drastically reduced, quickly vanishing to zero,
and becomes an exact sampler after some iterations
(like ARS and unlike ARMS), as shown by the numerical re-
sults in Section IV.
Finally, let us remark that requires selecting a single

set of parameters: the initial set of support points, . After this

4We remark again that this cannot be guaranteed by the adaptive structure of
ARMS, as discussed in Section II-D.

TABLE IV
INDEPENDENT DOUBLY ADAPTIVE REJECTION METROPOLIS SAMPLING

ALGORITHM

choice, the algorithm proceeds automatically without any fur-
ther intervention required by the user. Regarding the robustness
of w.r.t. , the only requisite is choosing
initial support points where the value of the target is different
from zero, i.e., for . Furthermore, if
the effective support of the target (i.e., the support containing
most of its probability mass) is approximately known, then a
good initialization consists of selecting the two points delim-
iting this support and at least another point inside this support. If
the user desires to increase the robustness of , a grid of
initial points can be used. This choice speeds up the convergence
of the algorithm, but any random selection within the effective
support of the target ensures the convergence of . The
robustness of w.r.t. this initial set can be seen in the
Gaussian mixture and heavy tailed distribution examples (see
Sections IV-A and IV-B), where a random initial set is selected.

B. Convergence of the Chain and Computational Cost
The new control test is performed using an auxiliary variable,
, which is always different from the new state, . This con-
struction leads to a proposal, , which is independent of the
current state of the chain, . Hence, the convergence of the
Markov chain to the target density is ensured by Theorem 2 in
[41] (Theorem 8.2.2 in [11]).5 In Appendix A we show that the
conditions required to apply this theorem are fulfilled as long as

almost everywhere. This crucial issue is proved
in Appendix B and implies also that almost ev-
erywhere as , as proved in Appendix C. The convergence
of to almost everywhere also implies that proba-
bility of adding new support points tends to zero as ,
as proved in Appendix D, thus keeping the computational cost

5Note that, even though the algorithm falls inside the broad cate-
gory of independent adaptive algorithms, its structure is inspired by [28], not
by [41]. Indeed, no RS test is performed in [41] and the construction of the pro-
posals is completely different.
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Fig. 3. Examples of proposal constructions using: (a) the procedure described by (6) in the log-domain; (b) the procedure described by (7) in the log-domain;
(c) the procedure described by (8) in the log-domain; (d) the procedure described by (9) in the pdf's domain.

bounded. Note that there is no contradiction between the results
in Appendix A and Appendix D. As more support points are
added, becomes closer to the target, and this implies a
decrease in the probability of adding new support points. How-
ever, for there is always a non-null (albeit small for large
values of ) probability of adding new support points to improve
the proposal and make it become closer to the target.
The coding and implementation complexity of is

virtually identical to ARMS, since all the quantities involved
in the ratio of step 5.2 have been previously calculated in steps
4 and 5.1. Thus, no additional evaluation of the proposal and
target pdfs is required. Given a specific construction procedure
for , the total number of support points increases w.r.t.
ARMS, but it always remains within the same order of mag-
nitude, as shown in the simulations. Indeed, it is important to
emphasize that the number of support points does not diverge:
it remains bounded thanks to the two control tests, exactly as
in ARS and ARMS, since almost everywhere as

, as shown in the Appendix.
Finally, let us remark that, although most of the results pro-

vided in the Appendix are asymptotic, Theorem 2 in [41] also
provides us with solid theoretical guarantees for a finite number
of iterations of the algorithm. Indeed, it ensures that
is drawing samples from the target distribution within a finite
number of iterations with a probability arbitrarily close to 1. See
Appendix A for further details.

C. Alternative Proposal Constructions

Since improves the adaptive structure of ARMS,
simpler procedures can be used to build the function ,
reducing the overall computational cost and the coding effort.
A first possibility is defining inside the -th interval
simply as the straight line going through
and for , and extending the
straight lines corresponding to and towards for
the first and last intervals. Mathematically,

(6)

for , in
and in . This is il-
lustrated in Fig. 3(a). Note that, although this procedure looks
similar to the one used in ARMS, as described by (5), it is ac-
tually much simpler, since it does not require the calculation of
intersection points. Furthermore, an even simpler procedure to
construct can be devised from (6): using a piecewise con-

stant approximation with two straight lines inside the first and
last intervals. Mathematically,

(7)

for , in and
in . This construction

leads to the simplest proposal possible: a collection of uniform
pdfs with two exponential tails. Fig. 3(b) shows an example of
the construction of the proposal using this approach. A more
sophisticated approach can be devised if the first derivative of

is available. Denoting the straight line tangent to at
as , we can construct

(8)

for , and two exponential tails for and ,
built also using the first derivative of (see Fig. 3(d)).
Alternatively, we could build the proposal directly, in-

stead of constructing and setting .
Following this approach, we could apply the procedure de-
scribed in [32] for adaptive trapezoidal Metropolis sampling
(ATRAMS), even though the structure of this algorithm is com-
pletely different to ours. In this case, the proposal is constructed
using straight lines passing through and

, i.e., directly in the domain of the target pdf,
. Mathematically,

(9)

for , and the tails are two exponential pieces.
Fig. 3(c) shows an example of a proposal using this approach.
Finally, note that (7) would be identical in the pdf's domain,
since .
Furthermore, applying (9) directly in the pdf's domain could
yield invalid proposals with inside some regions.
Indeed, although many other alternatives can be considered
to build the proposal, they have to satisfy the following basic
properties:
1) Valid proposals are always obtained, i.e.,

and .
2) The sequence of proposals tends to (i.e.,

) when new support points are added.
3) Samples from can be efficiently drawn.

The first condition is easily fulfilled in the log-domain, but re-
stricts the use of some constructions in the pdf's domain. The
second condition is the key for the good performance of the al-
gorithm. The last condition is essential for practical purposes to
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Fig. 4. Examples of proposal constructions in the log-domain, using the procedure described by (7) and the Pareto tails in (10), for different values of
. The tails always pass through the points and (left tail), and through and (right tail).

(a)-(b)When , the right tail becomes flatter. (c)-(d)When , the right tail becomes closer to a vertical line.

obtain an efficient algorithm. When the proposal is a piecewise
function, as in the four constructions proposed in this section,
it implies being able to compute the area below each piece and
drawing samples efficiently from each piece.

D. Alternative Construction for the Tails
Note that the construction of the tails can be modified in

order to adapt the proposal to a specific class of targets (e.g.,
heavy-tailed distributions). For instance, an alternative to the
exponential tails is using Pareto pieces:

(10)

for and . Fixing the parameter , and
are obtained solving the following system of equations:

which ensure that the left tail passes through the points
and . Similarly, fixing , we obtain

an equivalent system of equations by forcing the right tail
to pass through and . The
solution of these two systems of equations is straightforward,
and the parameters can be arbitrarily chosen by the user, as
long as , and they lead to .6
Selecting and yields smaller values of

and (i.e., closer to 1), and thus fatter tails. Larger values
(i.e., and ) yield larger values of
and , and thus lighter tails. Finally, note that the integral
of in and can be computed analytically, and that
we can easily draw from each Pareto tail using the inversion
method [2].

IV. NUMERICAL RESULTS
In this section, we compare the performance of

with other methods developed in the literature by drawing sam-
ples from different target distributions. First of all, we consider
two one-dimensional examples, where we generate samples di-
rectly from two univariate distributions: a Gaussian mixture and
a heavy-tailed distribution. Then, we also consider three exam-
ples of the performance of within Gibbs sampling:

6If (resp. ) is obtained, then a larger value of (resp.
a smaller value of ) must be selected and the system of equations solved
again until (resp. ) is obtained. Fig. 4 depicts some examples
of this construction in the log-domain for different values of .

two bi-dimensional toy examples and a real-world target local-
ization application in a wireless sensor network.7

A. Multimodal Target: Mixture of Gaussians
1) ComparisonWith Standard ARMS: As a first toy example,

we compare the performance of and ARMS on a mul-
timodal one-dimensional target pdf, , generated as a mix-
ture of 3 Gaussian densities,

(11)
where indicates that the random variable has a
Gaussian pdf with mean and variance . We test the four
alternative procedures previously described to build the pro-
posal, both for ARMS and . In all cases, we consider

iterations of the Markov chain (without removing
any samples to account for the “burn-in” period), 2000 runs of
the algorithm to average the results, and an initial support set

with
support points, where with .
Table V compares the results obtained for ARMS and

. The standard ARMS algorithm, as proposed in [28],
corresponds to the first row on the left-hand side of Table V,
i.e., ARMS adaptive structure with the construction in (5) for
the proposal. The first column in both cases shows the estimated
mean of (true value, ) averaged over
2000 runs, altogether with the estimator's standard deviation.
Note that always outperforms ARMS, regardless of
the proposal construction scheme. Indeed, the three approaches
of (7)–(9) provide estimates of the mean which are very close
to the true value with a large decrease in the standard deviation
w.r.t. ARMS. This can also be appreciated in the mean squared
error (MSE) value, , shown in the second
columns: the worst-case result for is almost as good
as the best-case result for ARMS.
Additionally, we also provide an estimation of the linear cor-

relation among consecutive samples at lag 1, , and an
estimate of the final distance between the unnormalized pro-
posal and the target pdf, .8 These results confirm the
better performance of w.r.t. ARMS. On the one hand,
the proposal always converges to the target for , as ev-
idenced by the low values of when compared with the
corresponding values for ARMS. On the other hand, this causes

7Matlab code for using the procedures in (6)–(9) to build the pro-
posal is available at http://a2rms.sourceforge.net/.

8 is related to the probability of accepting the proposed samples [42],
and thus also to the number of support points added (see Appendix D).
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TABLE V
COMPARISON OF VS. ARMS ADAPTIVE STRUCTURES FOR THE GAUSSIAN MIXTURE EXAMPLE: STANDARD ARMS IS OBTAINED USING THE PROPOSAL

IN (5). : ESTIMATED MEAN STANDARD DEVIATION; MSE: MEAN SQUARED ERROR; : CORRELATION AT LAG 1; : ESTIMATE OF
at ; : AVERAGE NUMBER OF PIECES IN at ; TIME: NORMALIZED TIME W.R.T. STANDARD ARMS

most of the proposed samples to be accepted, thus leading to a
greatly reduced correlation among consecutive samples (more
than two orders of magnitude in some cases).
Table V also provides the average number of linear pieces in

the final proposal, . For the proposal construction schemes
of (6)–(9), corresponds directly to the average final
number of intervals. However, using the procedure proposed
in [28] in general we have more pieces than intervals, as noted
before. In any case, regardless of the proposal building scheme,
the number of intervals in always increases w.r.t.
ARMS. However, this increase is always moderate, controlled
(see Appendix D for a bound on the number of support points),
and should not be considered a disadvantage of .
Indeed, it is an evidence of the structural limitation of ARMS
(see Section II-D), and allows to obtain much better
results than ARMS (in terms of estimated mean, standard
deviation, MSE, autocorrelation, and distance between the
proposal and the target) with a moderate increase in storage
and computational cost.
Finally, the last columns in Table V show the normalized

time spent by the different techniques, considering 1.0 to be
the simulation time required by the standard ARMS method
of [28]. On the one hand, the simulation time for al-
ways increases w.r.t. ARMSwhen using the same proposal con-
struction scheme in both cases. On the other hand, the simula-
tion time is greatly reduced by using some of the simpler pro-
posal construction procedures considered in the paper. Indeed,

with any of the three simple procedures proposed re-
quires less time than the standard ARMS. This is due to the fact
that these methods reject less candidate points in the RS test
than the standard ARMS. For instance, using the procedure of
(9) only 62.5% of the added support points have been rejected
in the RS test (where the chain does not move forward), whereas
the remaining points are incorporated in the second control test
(where the chain is not stopped). In ARMS, since the second
control test does not exist, support points can only be added after
a rejection in the RS test, which implies that the chain always has
to be stopped in order to improve the proposal. Table VI shows
the average number of support points added in the control tests
for ARMS and using all the proposed constructions.
Note that, with the exception of the construction in (5) (first
row), the sum of the number of points incorporated in both tests
plus (the number of initial support points) provides the
final number of pieces in the proposal in Table V, .
2) Comparison With Other Techniques: In order to show

the good performance of , we compare it to three

TABLE VI
NUMBER OF SUPPORT POINTS ADDED IN THE CONTROL TESTS

widely used sampling techniques: slice sampling [1, Chapter
6], the standard MH algorithm [2], and Multiple Try Metropolis
(MTM) [1, Chapter 5]. For the MH and MTM schemes, we use
Gaussian proposal pdfs with different means and
variances . We also test independent and
random walk proposals, i.e.,
and respec-
tively.9 Regarding the MTM schemes, we experiment with

tries, and importance weights designed to
choose the best candidate in each step [43].10
Table VII shows the results obtained, for the target pdf in

(11), using similar settings as before: 2000 runs,
iterations of the Markov chain,11 and performing the estimation
with all the samples generated. The results of standard ARMS
(i.e., ARMS with the proposal construction procedure of (5))
and using the procedure of (7) to build the proposal,
are recalled in the first two rows. Note that the only technique
that outperforms is MTM with an independent pro-
posal (MTM-ind), tries, and .
However, this approach is highly tailored to the particular target
considered in this case and its computational cost is much higher
than that of . Furthermore, we notice that the choice
of the parameters has a great influence on the results for the
MH and MTM approaches, even though the target distribution
is simply a mixture of 3 Gaussians. Indeed, Table VII shows that
a poor performance can be easily obtained when an unsuitable
choice is made. For this reason, it is preferable to use an adap-
tive black-box technique like .

9Note that the values and are exactly the mean and the
variance of the target distribution (i.e., in this case the proposal shares the first
and second order moments with the target).

10In general, MTM schemes need to draw samples per iteration plus
auxiliary points [1]. On the one hand, MTM degenerates into a standard

MH when . On the other hand, its computational cost per iteration of the
Markov chain increases substantially as is increased.

11We use iterations of the Markov chain to ensure
a fair comparison with , since the Markov chain is stopped whenever
a sample is rejected in the RS test, both for ARMS and .
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TABLE VII
RESULTS WITH DIFFERENT TECHNIQUES USING FOR THE GAUSSIAN MIXTURE EXAMPLE

TABLE VIII
ESTIMATION OF THE CONSTANT FOR THE LÉVY DISTRIBUTION

B. Heavy-Tailed Distribution
In this section, we show that can be applied to draw

samples from heavy-tailed distributions, even by using a pro-
posal pdf with exponential (i.e., “light”) tails. As an example,
we consider the Lévy distribution, which is a special case of the
inverse-gamma distribution, and has a pdf

(12)

. The normalizing constant, , such that
integrates to one, can be determined analytically, and

is given by . However, given a random variable
, all the moments with do not exist, due

to the heavy-tailed feature of the Lévy distribution.
Our goal is estimating the normalizing constant via Monte

Carlo simulation, when and . We use
with the construction procedure in (9), which provides the best
trade-off between performance and computational cost.We start
with only support points, , where

with . We also apply three different
MTM techniques using tries and importanceweights
designed again to choose the best candidate in each step [43].
In the first two schemes (MTM-ind), we use an independent
proposal with
and . In the last one (MTM-rw), we use a random
walk proposal with

. Note that we need to choose huge values of due
to the heavy-tailed feature of the target. As before, we use

iterations for and for the MTM
schemes in order to ensure a fair comparison.12

12Note that this choice penalizes with the construction in (9) in the
comparison with the other methods, since the number of rejections in the RS
test is only in this case (see Table VI).

The results, averaged over 2000 runs, are summarized in
Table VIII. Note that the real value of when is

. The algorithm provides better results
than all of the MTM approaches tested with only a fraction
of their computational cost. Furthermore, avoids the
critical issue of parameter selection (selecting a small value of

in this case can easily lead to very poor performance).

C. Application Within Gibbs
1) Toy Example 1: Consider two Gaussian full-conditional

densities,

(13)

(14)

with and . The joint pdf is a bivariate Gaussian
pdf with mean vector and covariance matrix

. We apply a Gibbs sampler with it-
erations to estimate both the mean and the covariance of the
joint pdf. Then, we calculate the average MSE in the estima-
tion of all the elements in and , averaged over 2000 inde-
pendent runs. We use this simple case, where we can draw di-
rectly from the full-conditionals, to check the performance of
MH and within Gibbs as a function of and .
For the MH scheme we use a Gaussian random walk proposal,

for ,
and . For we use the con-

struction of (9) with .
In the first experiment, we set and (both

for MH and ), and increase the value of . The results
can be seen in Fig. 5(a), (b): attains almost the same
performance as the ideal case (sampling directly from the full
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Fig. 5. (a)-(b) MSE as function of the number of iterations in the Markov chain for . The constant dashed line is the MSE
obtained drawing directly from the full-conditionals. (c) MSE as a function of the product for the MH-within-Gibbs (both fixing and letting

, and fixing and letting ) and within Gibbs (fixing and letting ). (d)MSE as function
of the number of iterations in the Gibbs sampler for . The dashed line is again the MSE drawing from the full-conditionals.

conditionals) for small values of , whereas the MH scheme
needs a substantially larger value of (up to for

) to attain a similar performance. In a second experi-
ment, we check the behaviour of both approaches as is in-
creased. Now, we set and for
(both for MH and ), and compare the performance of
MH with and .13 Fig. 5(c) compares the per-
formance of MH-within-Gibbs (both fixing and let-
ting , and fixing and letting

) and within Gibbs (fixing and let-
ting ). First of all, we notice that and
have the same effect for MH-within-Gibbs: as long as
is constant we obtain the same results by increasing any of them.
Then, we notice that (with an for

and for ) clearly
outperforms the MH scheme. Finally, Fig. 5(d) shows the effect
of increasing for a fixed value of . Once more, the MSE
of is well below the MSE attained by MH.
2) Toy Example 2: Let us consider the target density

with , , and . Densities of this
analytic form are frequently used in the statistical literature (cf.
[43], [44]) to compare the performance of different Monte Carlo
algorithms. We apply a Gibbs sampler to draw from ,
using the standard ARMS method [28] (i.e., with the construc-
tion in (5)) and the technique (with the proposal
construction in (9)) within the Gibbs sampler to generate sam-
ples from the full-conditionals, starting always with the initial
support set .
For each full-conditional pdf, we draw samples and take
the last one as the output from the Gibbs sampler. We also
apply a standard MH algorithm with a random walk pro-
posal
for , , and

. Furthermore, we test an ad-hoc MH scheme
(i.e., specifically designed for this target pdf): for the full-con-
ditionals w.r.t. , we consider an independent proposal
pdf ,

13Note that we have chosen a “bad” value of for Fig. 5(c), (d) to illus-
trate the danger of a bad parameterization in the MH-within-Gibbs approach.
However, even with a “good” value of , the performance of the MH scheme
is much worse than that of , as shown by the following numerical
example.

with , whereas for the full-conditionals
w.r.t. , we consider again the random walk proposal

with
.

We consider two initializations for all the methods-within-
Gibbs: (In1) ; (In2) and for

. We run iterations of the Gibbs sampler, using all
the samples to estimate four statistics that involve the first four
moments of the target: mean, variance, skewness and kurtosis.
Fig. 6(a) illustrates the target , and Fig. 6(b), (c) show the
mean absolute error (MAE) as a function of for different
techniques averaged over 1000 runs. Table IX provides the nu-
merical results (i.e., the averageMAE for each of the four statis-
tics estimated), and the time required by the Gibbs sampler (nor-
malized by considering 1.0 to be the time required by ARMS
with ). We also provide a measure of efficiency, defined
as the inverse of the averaged MAE over the required time and
normalized w.r.t. the maximum value ( with In2,

and ).
First of all, we notice that outperforms ARMS for

all values of , showing that the adaptive structure
speeds up the convergence of the Markov chain. For instance,

with only provides better results than ARMS
with , saving 95% of the computation time. Regarding
the use of the MH algorithm within Gibbs, the results depend
largely on the choice of the variance of the proposal, , and the
initialization, showing the need for adaptive MCMC strategies.
Indeed, for an inadequate scale parameter (e.g., or
), even with only provides better results than
MH with or . On the other hand, when a
good (i.e., ) and initialization (i.e., In2) are selected,
MH with provides virtually the same performance
(and with the same computational cost) as with

, showing that nothing is lost by using and there
is much to gain in terms of robustness w.r.t. parameter selection.
Finally, Table IX shows also the importance of increasing in
this case: and provides better results (and
with a lower computational cost) than and .
In any case, for a fixed value of , always
provides the best averaged MAE for a given with just a slight
increase in the computation time.
3) Target Localization in a Wireless Sensor Network: In this

section, we consider the problem of positioning a target in a
two-dimensional space using range and angle measurements.
This is a problem that appears frequently in localization applica-
tions using sensor networks [18], [45], [46]. More formally, we



MARTINO et al.: INDEPENDENT DOUBLY ADAPTIVE REJECTION METROPOLIS SAMPLING WITHIN GIBBS SAMPLING 3133

Fig. 6. (a) The target pdf, , used in Section IV-C-2. (b)MAE in estimation of the kurtosis (first component) as a function of for ARMS (triangles)
and (squares), and the MAEs for the MH algorithm with and (constant lines). MAE in estimation of the kurtosis
(first component) as a function of for (squares), and the MH algorithm with and (constant line).

TABLE IX
MEAN ABSOLUTE ERROR (MAE) IN THE ESTIMATION OF FOUR STATISTICS (FIRST COMPONENT) AND NORMALIZED TIME AND EFFICIENCY FOR

THE EXAMPLE IN Section IV-C-2. ALL THE TECHNIQUES ARE USED WITHIN A GIBBS SAMPLER

consider a random vector denoting the target's
position in . The range measurements are obtained from 6
sensors located at , , ,

, and . The obser-
vation equations are given by

(15)

where are i.i.d. Gaussian random variables,
. Moreover, we consider 4 additional sensors that

measure angle variations,

(16)

with , ,
, and . are
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Fig. 7. The target pdf for the localization example in Section IV-C-3. Average number of linear pieces in the proposal, , as function of
for ARMS (triangles) and (squares). Simulation time (normalized w.r.t. the time required by ARMS with ) as function of of ARMS
(triangles) and (squares).

TABLE X
NUMERICAL RESULTS FOR THE LOCALIZATION EXAMPLE. : NUMBER OF ITERATIONS FOR THE INTERNAL MCMC; MAE: MEAN ABSOLUTE ERROR IN THE

ESTIMATION OF ; : AVERAGE NUMBER OF PIECES IN THE FINAL PROPOSAL; TIME: NORMALIZED SIMULATION TIME

also Gaussian random variables: for
, 2, 3, and .

Let us assume that the measurement vector for the range is
, whereas the angular measure-

ment vector is , and the complete
observation vector is . In order to perform
Bayesian inference, we consider a non-informative prior over

(i.e., an improper uniform density on ), and study the
posterior pdf, . Our goal is
performing a Monte Carlo computation of the expected value
of given , , which is the minimumMSE (MMSE)
estimate of the target's position.
In order to draw samples from we perform

iterations of a Gibbs sampler, using both the standard ARMS
method of [28] (with the construction in (5)) and the
technique (with the construction in (9)) as internal MCMC
schemes. In both cases, we start with an initial support set

and consider iterations of
the chain. Fig. 7(a) depicts the target pdf, , whereas
Fig. 7(b) and (c) illustrate the average number of pieces of the
final proposal and the simulation time as a function of

respectively. Numerical results are provided in Table X. The
mean absolute error (MAE) in the estimation of the expected
value of the first component, , averaged over 2000 runs
is displayed in the first column. The second column shows the
average number of pieces of the final proposal, . The last
column provides the average simulation time, normalized w.r.t.
the time required by standard ARMS with . Once
more, the results show that outperforms ARMS in
terms of estimation accuracy, as evidenced by the lower value
of MAE. Furthermore, in this case turns out to require
a lower number of linear pieces for the proposal and thus also
a reduced simulation time w.r.t. ARMS.

V. CONCLUSIONS
In this work, we have introduced a new adaptive Monte

Carlo technique that solves an important structural
limitation of the popular ARMS algorithm, which is widely
used within Gibbs sampling. Unlike ARMS, builds
a sequence of self-tuned proposals that always converges to
the target distribution, while keeping the computational cost
bounded. As a consequence, the convergence of the chain is
speeded up w.r.t. ARMS and the correlation vanishes quickly
to zero. Furthermore, effectively decouples the adap-
tation mechanism from the proposal building scheme, thus
allowing us to reduce the complexity in the construction of
the sequence of proposals. Thus, we have also proposed four
simpler procedures to build the proposal densities. Indeed,

can be applied, both as a stand-alone algorithm or
within any approach that requires sampling from conditional
distributions (e.g., the Gibbs sampler, the hit-and-run algorithm
or adaptive directiom sampling), virtually to any target distribu-
tion. Numerical results show that outperformsARMS,
as well as other Monte Carlo approaches (Metropolis-Hastings,
Slice Sampling and Multiple Try schemes) in terms of esti-
mation accuracy, correlation and speed. Unlike other adaptive
MCMC algorithms, performs a complete adaptation
of the proposal, which always converges to the target and thus
guarantees the ergodicity of the chain (as proved in the theoret-
ical study performed). A promising future line is extending the

scheme to draw directly from multivariate distribu-
tions. Regarding this issue, we note that the adaptive structure
of is valid regarless of the dimension of the target
pdf, but the challenge is finding efficient procedures to build
the proposal pdfs in high-dimensional spaces. In this sense, the
constructions proposed in [47]–[50] for other types of methods
could be used.
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APPENDIX

Ergodicity of the Chain
The new control test in is performed using an aux-

iliary variable, , which is always different from the new state,
. This approach leads to a proposal, , which is in-

dependent of the current state of the chain, . Therefore, the
convergence of the Markov chain to a bounded target density
is ensured by Theorem 2 in [41] (Theorem 8.2.2 in [11]), since

satisfies the strong Doeblin condition if the target is
bounded. The strong Doeblin condition is satisfied if, given a
proposal pdf , there exists some , such that

(17)

In our case, since and
, (17) can be rewritten as

(18)

Hence, as , we could simply set

in order to fulfill (18). Furthermore, by using an appropriate
construction for the tails (exponential tails for Gaussian or sub-
Gaussian pdfs and Pareto pieces with the proper value of for
heavy-tailed distributions) we can guarantee that
in the tails. Thus, we can finally take

(19)

where . For any of the construc-
tions in Section III-C, the in (19) satisfy all the conditions
required: , and as , since

as (as proved in Appendix B) and thus
also as . Therefore,
we can ensure that

all the conditions for Theorem 2 in [41] are fulfilled, and geo-
metric convergence is obtained for the Markov chain. Indeed,
this theorem also states that the algorithm samples from the
target distribution within a finite number of samples with a prob-
ability arbitrarily close to 1 if infinitely many
often. In our case, considering , we can ensure that

infinitely many often. This is simply due
to the fact that the distance between and tends to
decrease as increases (see Appendix B), and thus
in general. Consequently, we can ensure that the algo-
rithm samples from the target distribution within a finite number
of samples with a probability arbitrarily close to 1.

Convergence of the Proposal to the Target
Here we show that as , implying that

as almost everywhere. Let us consider a set
of support points, , with ,

at time step , and a continuous and bounded target with
bounded derivatives. Hence, by using any of the procedures de-
scribed in Section III-C, the corresponding proposal function,

, is also a bounded function. Moreover,

since and . Let
us consider now the finite interval . The interpo-
lation methods proposed in Section III-C to build can be
seen as an -th order Taylor approximation (e.g., for the
procedure in (7) and for the one in (9)) inside each in-
terval. The discrepancy between and over is then
given by

(20)

where is the remainder associated to the -th order (with
in our case) polynomial approximation of inside

the interval , as given by Taylor's theorem. The Lagrange form
of this remainder is

for some . Moreover, since , it is
straightforward to show that

(21)

where , and denotes the
-th derivative of , i.e., .

Hence, replacing (21) in (20), we obtain

(22)

Now, let us assume that a new point, for
, is added at the next iteration. The construc-

tion of the proposal density changes only inside the interval ,
which can be split into and .
Then, with

, and ,
for any , since for any

thanks to Newton's binomial theorem.14 Hence, the bound
in (22) can never increase when a new support point is incor-
porated, and indeed tends to decrease (unless and the
derivative of is constant everywhere), thus implying that

14Indeed, for we have a strict inequality:
.
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since support points become arbitrarily close as (i.e.,
), implying that the bound on the right hand side

of (22) tends to zero as . Hence, we can guarantee that
for . Note that a mono-

tonic decrease of the distance between and inside
cannot be guaranteed, since adding a new support point might
occasionally lead to an increase in the discrepancy. However,
we can guarantee that the upper bound on this distance decreases
monotonically, thus ensuring that as , i.e.,
adding support points will eventually take us arbitrarily close to

.
Finally, regarding the tails, note that the distance between

and remains bounded even for heavy tailed distributions. Fur-
thermore, the interval will become larger as , since
there is always a non-null probability of adding new support
points inside the tails. Therefore, the probability mass associ-
ated to the tails decreases as . Hence, even though the
distance between the target and the proposal may again increase
occasionally due the introduction of a new support point in the
tails, we can guarantee that such a distance goes to zero as goes
to infinity. Overall, this guarantees that converges to
almost everywhere.

Discrepancy Between Normalized Proposals and Target
In this section, we prove that as im-

plies as . This discrepancy between the
normalized proposal and target densities is given by

(23)

Let us focus now on the absolute value inside the integral:

(24)

where we have used the triangle inequality.
Inserting (24) into (23), we obtain

Finally, noting that the first integral is equal to , whereas the
second one is simply , we have

(25)

Hence, since and as , we
can guarantee that as , implying that

almost everywhere.

Probability of Adding a New Support Point
The probability of adding a support point at the -th itera-

tion is , where and are the probabilities
of adding points in the first and second tests, respectively. Let us

also define and
, such that with .

1) First Test: The probability of adding a support point in
the RS test is

(26)

where denotes the distance between the un-
normalized proposal, , and the unnormalized target, ,
with .
2) Second Test: The probability of adding a new point in the

second test is given by the following triple integral,

(27)

where we have
• is the
probability of adding in .

• ,
where is given in Table IV.

• is the pdf of the chain at the -th iteration. For the
sake of simplicity, let us assume that

, i.e., has converged to the chain's in-
variant pdf, .15

• Since has been already accepted in an RS test, then

where .
Inserting all the previous terms in (27), becomes

where we can clearly distinguish 4 different cases.
Table XI shows the 4 terms involved in the calculation of .

15Note that this assumption is only fulfilled with probability one asymptoti-
cally. However, since fulfills Theorem 2 in [41], we can ensure that

with a probability arbitrarily close to 1 within a finite number
of samples.
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TABLE XI
PROBABILITY - SUMMARY

First of all, it is easy to see that . Moreover, for
the probability only the first integral is non-null. Hence,

where , and the inequality comes from the
fact that for . Similarly, replacing the
corresponding terms shown in Table XI in (27), and taking into
account that ,

where . Finally,

3) Total Probability:

Therefore, since almost everywhere as ,
then , and , implyting that the
probability of adding support points vanishes to zero.
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