STICKY PROPOSAL DENSITIES FOR ADAPTIVE MCMC METHODS

L. Martino[†], R. Casarin[‡], F. Leisen[§], D. Luengo[¶],

[†]University of Helsinki, [‡]Universitá Ca' Foscari, [§]University of Kent, [¶]Universidad Politecnica de Madrid.

MCQMC, 2014

Markov Chain Monte Carlo (MCMC) methods convert samples from a proposal pdf q̃(x) ∝ q(x), into correlated samples from a target pdf π̃(x) ∝ π(x), generating a chain.

$$x_0 \Longrightarrow x_1 \Longrightarrow \ldots x_t \underset{K(x_t|x_{t-1})}{\Longrightarrow} x_{t+1} \Longrightarrow \ldots x_{t+\tau} \sim \tilde{\pi}(x)$$

Markov Chain Monte Carlo (MCMC) methods convert samples from a proposal pdf q̃(x) ∝ q(x), into correlated samples from a target pdf π̃(x) ∝ π(x), generating a chain.

$$x_0 \Longrightarrow x_1 \Longrightarrow \ldots x_t \underset{K(x_t|x_{t-1})}{\Longrightarrow} x_{t+1} \Longrightarrow \ldots x_{t+\tau} \sim \tilde{\pi}(x)$$

- Within the Monte Carlo (MC) techniques:
 - ► [Gilks et al. (1992)]: adaptive rejection sampling (ARS),
 - [Gilks et al. (1995)]: adaptive rejection Metropolis sampling (ARMS),

are samplers from univariate pdfs.

Markov Chain Monte Carlo (MCMC) methods convert samples from a proposal pdf q̃(x) ∝ q(x), into correlated samples from a target pdf π̃(x) ∝ π(x), generating a chain.

$$x_0 \Longrightarrow x_1 \Longrightarrow \ldots x_t \underset{K(x_t|x_{t-1})}{\Longrightarrow} x_{t+1} \Longrightarrow \ldots x_{t+\tau} \sim \tilde{\pi}(x)$$

- Within the Monte Carlo (MC) techniques:
 - ► [Gilks et al. (1992)]: adaptive rejection sampling (ARS),
 - [Gilks et al. (1995)]: adaptive rejection Metropolis sampling (ARMS),

are samplers from univariate pdfs.

- They are often used within Gibbs sampling.
- Both techniques present different limitations.

Markov Chain Monte Carlo (MCMC) methods convert samples from a proposal pdf q̃(x) ∝ q(x), into correlated samples from a target pdf π̃(x) ∝ π(x), generating a chain.

$$x_0 \Longrightarrow x_1 \Longrightarrow \ldots x_t \underset{K(x_t|x_{t-1})}{\Longrightarrow} x_{t+1} \Longrightarrow \ldots x_{t+\tau} \sim \tilde{\pi}(x)$$

- Within the Monte Carlo (MC) techniques:
 - ► [Gilks et al. (1992)]: adaptive rejection sampling (ARS),
 - [Gilks et al. (1995)]: adaptive rejection Metropolis sampling (ARMS),

are samplers from univariate pdfs.

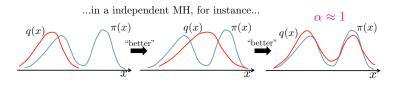
- They are often used within Gibbs sampling.
- Both techniques present different limitations.
- GOAL: Overcoming these drawbacks by proposing a more general and efficient class of adaptive samplers.

Performance

The performance of an MCMC method depends strictly on the discrepancy between proposal, *q* and target, *π*.

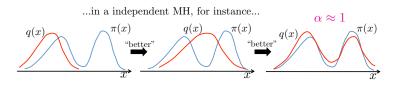
PERFORMANCE

- The performance of an MCMC method depends strictly on the discrepancy between proposal, *q* and target, *π*.
- ▶ If proposal=target, we have an exact sampler.



PERFORMANCE

- The performance of an MCMC method depends strictly on the discrepancy between proposal, *q* and target, *π*.
- If proposal=target, we have an exact sampler.



 Need of *adapting* the proposal density, while ensuring ergodicity.

Adaptive procedures

- Parametric: Learn parameters of the proposal (location and/or scale parameter).
- Non-parametric: Approximate the target via non-parametric procedures (as in kernel density estimation).

Adaptive procedures

- Parametric: Learn parameters of the proposal (location and/or scale parameter).
- Non-parametric: Approximate the target via non-parametric procedures (as in kernel density estimation).
 - Simple idea: Update the proposal taking into account the histogram of the generated samples (after "burn-in"):

proposal $\implies \beta_t \times \text{random walk} = (1 - \beta_t) \times$

イロト 不同下 イヨト イヨト

$$x_1,\ldots,x_t,\ldots,x_{t+\tau}\ldots$$

OTHER USEFUL INFORMATION

We have several evaluations of the target pdf available (at least at each state of the chain).

 $x_1,\ldots,x_t,\ldots,x_{t+\tau},$

$$\pi(x_1),\ldots,\pi(x_t),\ldots,\pi(x_{t+\tau}).$$

Can we incorporate all this information (or a subset) in the learning procedure?

OTHER USEFUL INFORMATION

We have several evaluations of the target pdf available (at least at each state of the chain).

 $x_1,\ldots,x_t,\ldots,x_{t+\tau},$

$$\pi(x_1),\ldots,\pi(x_t),\ldots,\pi(x_{t+\tau}).$$

- Can we incorporate all this information (or a subset) in the learning procedure?
- ► AIM: Interpolative construction of a proposal q which depends on a subset S_t ⊂ {x₁,..., x_t},

$$ilde{q}(x) = ilde{q}_t(x) \propto q_t(x|\mathcal{S}_t).$$

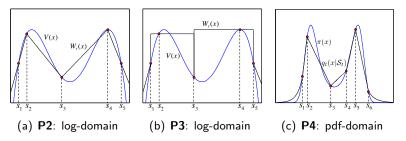
Adaptive proposal => adaptive MCMC.

INTERPOLATION PROCEDURES

• Consider a set of support points $S_t = \{s_1, \ldots, s_{m_t}\}$, and

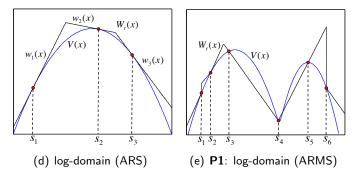
 $V(x) = \log[\pi(x)], \qquad W_t(x) = \log[q_t(x|\mathcal{S}_t)].$

Interpolation procedure:



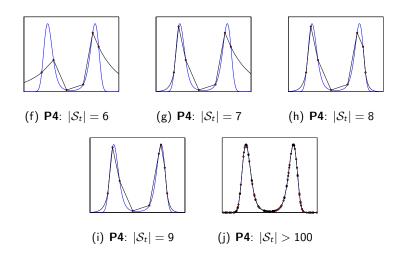
INTERPOLATION PROCEDURES

 Similar to the constructions in the *adaptive rejection sampling* (ARS) [Gilks et al., 1992] and *adaptive rejection Metropolis sampling* (ARMS) methods [Gilks et al., 1995].



- **ARS:** only for log-concave pdfs.
- **ARMS:** sometimes incomplete adaptation.

INTERPOLATION PROCEDURES



• Here the points are not adaptively chosen.

DRAWING FROM q_t

 $1. \ \mbox{Calculate}$ analytically the area below each piece, i.e.,

$$\int_{s_j}^{s_{j+1}} q_t(x|\mathcal{S}_t) dx = A_j, \quad j = 0, \dots, m_t,$$

denoting $s_0 = -\infty$ and $s_{m_t+1} = +\infty$.

2. Choose a j^* -th piece according to

$$\omega_j = \frac{A_j}{\sum_{j=1}^n A_j}, \quad j = 0, \dots, m_t.$$

3. Draw a sample x' from $q_t(x|\mathcal{S}_t)$ with $x \in (s_{j^*}, s_{j^*+1})$.

- $\begin{array}{l} \textbf{P2} \rightarrow \text{exponential pieces} \\ \textbf{P3} \rightarrow \text{uniform pieces} \end{array}$
- $\textbf{P4} \rightarrow \text{linear pieces}$

Computational cost - efficiency

- ► More points: better approximation of the target ⇒ more efficiency (i.e., less correlation ⇔ faster convergence).
- More points: to draw from q_t is more costly.

 $m_t \uparrow \implies$ efficiency $\uparrow +$ computational cost \uparrow

Desired adaptive strategy: manage the set S_t in order to build a "good" proposal with a small number m_t of points, keeping the ergodicity of the sampler.

1. Construction of the proposal: Build a proposal $q_t(x|S_t)$, using the set $S_t = \{s_1, \ldots, s_{m_t}\}$ (e.g., using P1, P2, P3 and P4).

- 1. Construction of the proposal: Build a proposal $q_t(x|S_t)$, using the set $S_t = \{s_1, \ldots, s_{m_t}\}$ (e.g., using P1, P2, P3 and P4).
- 2. MH step:
 - 2.1 Draw x' from $\tilde{q}_t(x) \propto q_t(x|\mathcal{S}_t)$.
 - 2.2 Set $x_{t+1} = x'$ and $z = x_t$ with probability

$$\alpha = 1 \wedge \frac{\pi(x')q_t(x_t|\mathcal{S}_t)}{\pi(x_t)q_t(x'|\mathcal{S}_t)},$$

and set $x_{t+1} = x_t$ and z = x', with probability $1 - \alpha$.

- 1. Construction of the proposal: Build a proposal $q_t(x|S_t)$, using the set $S_t = \{s_1, \ldots, s_{m_t}\}$ (e.g., using P1, P2, P3 and P4).
- 2. MH step:
 - 2.1 Draw x' from $\tilde{q}_t(x) \propto q_t(x|\mathcal{S}_t)$.
 - 2.2 Set $x_{t+1} = x'$ and $z = x_t$ with probability

$$\alpha = 1 \wedge \frac{\pi(x')q_t(x_t|\mathcal{S}_t)}{\pi(x_t)q_t(x'|\mathcal{S}_t)},$$

・ロト ・ ア・ ・ ヨト ・ ヨー・ うらの

and set $x_{t+1} = x_t$ and z = x', with probability $1 - \alpha$.

3. Test to update S_t : Set

 $\mathcal{S}_{t+1} = \mathcal{S}_t \cup \{z\}$ with prob. $P_a = \eta(d_t(z))$, otherwise $\mathcal{S}_{t+1} = \mathcal{S}_t$.

- 1. Construction of the proposal: Build a proposal $q_t(x|S_t)$, using the set $S_t = \{s_1, \ldots, s_{m_t}\}$ (e.g., using P1, P2, P3 and P4).
- 2. MH step:
 - 2.1 Draw x' from $\tilde{q}_t(x) \propto q_t(x|\mathcal{S}_t)$.
 - 2.2 Set $x_{t+1} = x'$ and $z = x_t$ with probability

$$\alpha = 1 \wedge \frac{\pi(x')q_t(x_t|\mathcal{S}_t)}{\pi(x_t)q_t(x'|\mathcal{S}_t)},$$

and set $x_{t+1} = x_t$ and z = x', with probability $1 - \alpha$.

3. Test to update S_t : Set

 $S_{t+1} = S_t \cup \{z\}$ with prob. $P_a = \eta(d_t(z)),$

otherwise $\mathcal{S}_{t+1} = \mathcal{S}_t$.

• $d_t(z) \Rightarrow$ a positive measure of the distance in z between the q_t and π .

- 1. Construction of the proposal: Build a proposal $q_t(x|S_t)$, using the set $S_t = \{s_1, \ldots, s_{m_t}\}$ (e.g., using P1, P2, P3 and P4).
- 2. MH step:
 - 2.1 Draw x' from $\tilde{q}_t(x) \propto q_t(x|\mathcal{S}_t)$.
 - 2.2 Set $x_{t+1} = x'$ and $z = x_t$ with probability

$$\alpha = 1 \wedge \frac{\pi(x')q_t(x_t|\mathcal{S}_t)}{\pi(x_t)q_t(x'|\mathcal{S}_t)},$$

and set $x_{t+1} = x_t$ and z = x', with probability $1 - \alpha$.

3. Test to update S_t : Set

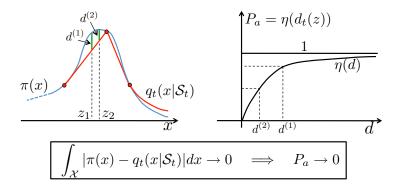
 $S_{t+1} = S_t \cup \{z\}$ with prob. $P_a = \eta(d_t(z)),$

otherwise $S_{t+1} = S_t$.

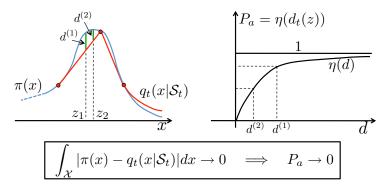
- $d_t(z) \Rightarrow$ a positive measure of the distance in z between the q_t and π .
- ▶ $\eta : \mathbb{R}^+ \to [0, 1] \Rightarrow$ increasing, with $\eta(0) = 0, \eta(\infty) = 1$.

11/24

Control test: Update of S_t



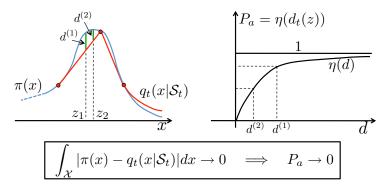
Control test: Update of \mathcal{S}_t



We obtain, at the same time, both:

- Efficiency: we add points where (and when) exactly needed.
- ► Bounded computational cost: since P_a → 0, m_T is controlled.

Control test: Update of S_t



We obtain, at the same time, both:

- Efficiency: we add points where (and when) exactly needed.
- ► Bounded computational cost: since P_a → 0, m_T is controlled.

Exactly as in the ARS [Gilks et al., 1992].

AN EXAMPLE OF ASM

1. Build
$$q_t(x|\mathcal{S}_t)$$
.
2. Draw $x' \sim \tilde{q}_t(x) \propto q_t(x|\mathcal{S}_t)$.
3. Set $x_{t+1} = x'$ and $z = x_t$ with probability

$$\alpha = 1 \wedge \frac{\pi(x')q_t(x_t|\mathcal{S}_t)}{\pi(x_t)q_t(x'|\mathcal{S}_t)},$$

otherwise set
$$x_{t+1} = x_t$$
 and $z = x'$.
4. Draw $u' \sim \mathcal{U}([0, 1])$. If

$$u' \geq \frac{\min[\pi(z), q_t(z|\mathcal{S}_t)]}{\max[\pi(z), q_t(z|\mathcal{S}_t)]},$$

set $\mathcal{S}_{t+1} = \mathcal{S}_t \cup \{z\}$, otherwise set $\mathcal{S}_{t+1} = \mathcal{S}_t$.

OTHER POSSIBLE TESTS

$d_t(z)$	$\eta(d)$	Туре	
$d_t(z) = 1 - \frac{\min[\pi(z), q_t(z \mathcal{S}_t)]}{\max[\pi(z), q_t(z \mathcal{S}_t)]}$	$\eta(d) = d$,	random (similar to	
	with $d \in [0,1]$	ARS, ARMS)	
$d_t(z) = \pi(x) - q_t(x \mathcal{S}_t) $	$\eta(d) = 1 - \exp(-d),$	random	
	with $d\in \mathbb{R}^+$		
$d_t(z) = \pi(x) - q_t(x \mathcal{S}_t) $	$\eta(d) = 1$ if $d_t(z) > \varepsilon$	deterministic	
	$\eta(d) = 0$ if $d_t(z) \leq \varepsilon$		

With the deterministic test, at some t^{*} < ∞, the adaptation could be stopped, depending on ε.</p>

Based on a result in [Holden et at., 2009]:

1. The adaptation procedure must use z instead of x_{t+1} .

Based on a result in [Holden et at., 2009]:

- 1. The adaptation procedure must use z instead of x_{t+1} .
- 2. The proposal must satisfy the *strong Doeblin's condition*, i.e., there exists a value $a_t \in (0, 1], \forall t \in \mathbb{N}$, such that

$$rac{1}{a_t} ilde{q}_t(x|\mathcal{S}_t) \geq ilde{\pi}(x), \quad orall x \in \mathcal{X}.$$

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

Based on a result in [Holden et at., 2009]:

- 1. The adaptation procedure must use z instead of x_{t+1} .
- 2. The proposal must satisfy the *strong Doeblin's condition*, i.e., there exists a value $a_t \in (0, 1], \forall t \in \mathbb{N}$, such that

$$rac{1}{a_t} ilde{q}_t(x|\mathcal{S}_t) \geq ilde{\pi}(x), \quad orall x \in \mathcal{X}.$$

- Fulfilled by ASM (note that we can always change the type of tails used in the proposal construction).
- For more details, see

[Holden09]: L. Holden, R. Hauge, and M. Holden. "Adaptive Independent Metropolis-Hastings." The Annals of Applied Probability, 19(1): 395-413, 2009.

1. Construction of the proposal: Build $q_t(x|S_t)$ using the set S_t .

- 1. Construction of the proposal: Build $q_t(x|S_t)$ using the set S_t .
- 2. MTM step:
 - 2.1 Draw x'_1, \ldots, x'_M from $\tilde{q}_t(x) \propto q_t(x|\mathcal{S}_t)$ and compute the weights $w_t(x'_i) = \frac{\pi(x'_i)}{q_t(x'_i|\mathcal{S}_t)}$.

- 1. Construction of the proposal: Build $q_t(x|S_t)$ using the set S_t .
- 2. MTM step:
 - 2.1 Draw x'_1, \ldots, x'_M from $\tilde{q}_t(x) \propto q_t(x|\mathcal{S}_t)$ and compute the weights $w_t(x'_i) = \frac{\pi(x'_i)}{q_t(x'_i|\mathcal{S}_t)}$.
 - 2.2 Select $x' = x'_j \in \{x'_1, ..., x'_M\}$ with probability $\frac{w_t(x'_j)}{\sum_{i=1}^M w_t(x'_i)}$.

- 1. Construction of the proposal: Build $q_t(x|S_t)$ using the set S_t .
- 2. MTM step:
 - 2.1 Draw x'_1, \ldots, x'_M from $\tilde{q}_t(x) \propto q_t(x|\mathcal{S}_t)$ and compute the weights $w_t(x'_i) = \frac{\pi(x'_i)}{q_t(x'_i|\mathcal{S}_t)}$.
 - 2.2 Select $x' = x'_j \in \{x'_1, ..., x'_M\}$ with probability $\frac{w_t(x'_j)}{\sum_{i=1}^M w_t(x'_i)}$.
 - 2.3 Set the auxiliary points $x_i^* = x_i'$ and $z_i = x_i'$, $i \neq j$ and $x_j^* = x_t$.

イロン イロン イヨン イヨン 三日

- 1. Construction of the proposal: Build $q_t(x|S_t)$ using the set S_t .
- 2. MTM step:
 - 2.1 Draw x'_1, \ldots, x'_M from $\tilde{q}_t(x) \propto q_t(x|\mathcal{S}_t)$ and compute the weights $w_t(x'_i) = \frac{\pi(x'_i)}{q_t(x'_i|\mathcal{S}_t)}$.
 - 2.2 Select $x' = x'_j \in \{x'_1, ..., x'_M\}$ with probability $\frac{w_t(x'_j)}{\sum_{i=1}^M w_t(x'_i)}$.
 - 2.3 Set the auxiliary points $x_i^* = x_i'$ and $z_i = x_i'$, $i \neq j$ and $x_j^* = x_t$. 2.4 Set $x_{t+1} = x'$ and $z_j = x_t$ with probability

$$\alpha = \min\left[1, \frac{w_t(x_1') + \dots + w_t(x_M')}{w_t(x_1^*) + \dots + w_t(x_M^*)}\right]$$

and set $x_{t+1} = x_t$ and $z_j = x'_j$, with probability $1 - \alpha$.

- 1. Construction of the proposal: Build $q_t(x|S_t)$ using the set S_t .
- 2. MTM step:
 - 2.1 Draw x'_1, \ldots, x'_M from $\tilde{q}_t(x) \propto q_t(x|\mathcal{S}_t)$ and compute the weights $w_t(x'_i) = \frac{\pi(x'_i)}{q_t(x'_i|\mathcal{S}_t)}$.
 - 2.2 Select $x' = x'_j \in \{x'_1, ..., x'_M\}$ with probability $\frac{w_t(x'_j)}{\sum_{i=1}^M w_t(x'_i)}$.
 - 2.3 Set the auxiliary points $x_i^* = x_i'$ and $z_i = x_i'$, $i \neq j$ and $x_j^* = x_t$. 2.4 Set $x_{t+1} = x'$ and $z_j = x_t$ with probability

$$\alpha = \min\left[1, \frac{w_t(x_1') + \dots + w_t(x_M')}{w_t(x_1^*) + \dots + w_t(x_M^*)}\right]$$

and set $x_{t+1} = x_t$ and $z_j = x'_j$, with probability $1 - \alpha$.

3. Test to update S_t : Set

$$\mathcal{S}_{t} = \begin{cases} \mathcal{S}_{t-1} \cup \{z_{i}\} & \text{with prob.} \quad \eta_{i}(d_{t}(z_{i})), i = 1, \dots, M \\ \mathcal{S}_{t-1} & \text{with prob.} \quad 1 - \sum_{i=1}^{M} \eta_{i}(d_{t}(z_{i})). \end{cases}$$

16/24

 The proof of ASMTM is an extension of the results in [Holden09]. See

L. Martino, R. Casarin, F. Leisen, D. Luengo, "Adaptive Sticky Generalized Metropolis", arXiv:1308.3779, 2013.

- The proof is valid for ASM and ASMTM for a generic construction of the proposal (not only univariate).
- The proposal must fulfill the Doeblin's condition.

HIGHER DIMENSIONS: ASM WITHIN GIBBS

This approach is not confined only to the one-dimensional case. It can be used to the multidimensional setting via a suitable interpolation procedure (still an open problem).

HIGHER DIMENSIONS: ASM WITHIN GIBBS

- This approach is not confined only to the one-dimensional case. It can be used to the multidimensional setting via a suitable interpolation procedure (still an open problem).
- ► Sticky proposals: easy to be implemented in one-dimension.

HIGHER DIMENSIONS: ASM WITHIN GIBBS

- This approach is not confined only to the one-dimensional case. It can be used to the multidimensional setting via a suitable interpolation procedure (still an open problem).
- Sticky proposals: easy to be implemented in one-dimension.
- Within Gibbs: we need efficient samplers to draw from the full-conditional pdfs (as close as possible to an exact sampler).

Target pdf:

$$ilde{\pi}(x) \propto \pi(x) = 0.5 \mathcal{N}(7, 1) + 0.5 \mathcal{N}(-7, 0.1),$$
 (1)

- ► Goal: Estimating the mean of X ~ π̃(x) (E[X] = 0).
- Experimental Setting:
 - Use all the generated samples (T = 5000) without removing any "burn-in" period.
 - Perform 2000 runs using an initial $S_0 = \{-10, -8, 5, 10\}$.
- ► We compare with the Standard ARMS method [Gilks et al., 1995] which corresponds to the first row of Table 1.
- ARMS is often used within Gibbs.

Algorithm	MSE	ACF(1)	ACF(10)	ACF(50)	m _T	Time
ARMS-P1 (Gilks)	10.0395	0.4076	0.3250	0.2328	118.1912	1.0000
ARMS-P2	15.6756	0.8955	0.7210	0.4639	7.6126	0.1195
ARMS-P3	0.2398	0.8753	0.4410	0.0296	131.3360	0.3589
ARMS-P4	0.2874	0.8882	0.4758	0.0418	42.8872	0.2291
ASM-P1	3.0277	0.1284	0.1099	0.0934	152.6301	1.2274
ASM-P2	2.9952	0.1306	0.1125	0.0929	71.1478	0.2757
ASM-P3	0.0290	0.0535	0.0165	0.0077	279.6570	0.6494
ASM-P4	0.0354	0.0354	0.0195	0.0086	84.8742	0.3297
ASMTM-P1 ($M = 10$)	0.6720	0.0726	0.0696	0.0624	159.0060	2.3547
ASMTM-P1 ($M = 50$)	0.1666	0.0430	0.0395	0.0316	160.7579	6.4518
ASMTM-P2 ($M = 10$)	0.5632	0.0588	0.0525	0.0443	72.1628	1.1291
ASMTM-P2 ($M = 50$)	0.1156	0.0345	0.0303	0.0231	72.5270	4.3802
ASMTM-P3 ($M = 10$)	0.0105	0.0045	0.0001	0.0001	315.7808	2.6022
ASMTM-P3 ($M = 50$)	0.0099	0.0063	0.0001	0.0001	360.7323	10.5935
ASMTM-P4 ($M = 10$)	0.0108	0.0036	0.0011	0.0014	92.6660	1.8618
ASMTM-P4 ($M = 50$)	0.0098	0.0001	0.0001	0.0001	101.7775	7.2475

TABLE: Different columns: the mean square error (MSE), the autocorrelation function (ACF(k)) at different lags, k = 1, 10, 50, the final number of support points (m_T), the computing times normalized w.r.t. ARMS [Gilks et al., 95] (Time).

- ASM schemes provide better results than the standard ARMS in all cases, regardless of the scheme used to build the proposal.
- ASM-P4 is also faster then ARMS (-P1, [Gilks95]), providing better results.
- ASM is also quite robust w.r.t. the choice of the initial set S_0 .
- Good results are also obtained with other kinds of distributions; see

L. Martino, R. Casarin, F. Leisen, D. Luengo, "Adaptive Sticky Generalized Metropolis", arXiv:1308.3779, 2013.

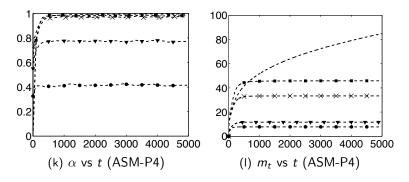


FIGURE: Averaged α and number of support points m_t over the ASM chain iterations. In each plot the results of the ASM-P4 with random test Ex-3, $\beta = 1$, (line without symbol) is compared with the results of a deterministic test with $\varepsilon = 0.005$ (square), $\varepsilon = 0.01$ (cross), $\varepsilon = 0.1$ (triangle) and $\varepsilon = 0.2$ (circle).

CONCLUSIONS

Advantages:

- ASM is a valid alternative for ARS and ARMS.
- ► Good performance ⇒ ASM is an asymptotically exact sampler.
- Really useful within Gibbs.

Limitations:

Difficult to build the proposal in higher-dimension.

Future:

Can we use a Gaussian Process (GP) as proposal pdf? this can solve the previous limitation ... (work in progress)

- Thank you very much!
- Any questions?

Main references:

[Gilks92]: W. R. Gilks and P. Wild. "Adaptive Rejection Sampling for Gibbs Sampling." Applied Statistics, 41(2): 337-348, 1992.

[Gilks95]: W. R. Gilks, N. G. Best and K. K. C. Tan. "Adaptive Rejection Metropolis Sampling within Gibbs Sampling." Applied Statistics, 44(4): 455-472, 1995.

[Holden09]: L. Holden, R. Hauge, and M. Holden. "Adaptive Independent Metropolis-Hastings." The Annals of Applied Probability, 19(1): 395-413, 2009.

Further info:

L. Martino, R. Casarin, F. Leisen, D. Luengo, "Adaptive Sticky Generalized Metropolis", arXiv:1308.3779, 2013.