
Sticky proposal densities for adaptive
MCMC methods

L. Martino†,R. Casarin‡, F. Leisen§, D. Luengo¶,
†University of Helsinki, ‡Universitá Ca’ Foscari,

§University of Kent, ¶Universidad Politecnica de Madrid.

MCQMC, 2014

2014
1 / 24

Introduction

I Markov Chain Monte Carlo (MCMC) methods convert
samples from a proposal pdf q̃(x) ∝ q(x), into correlated
samples from a target pdf π̃(x) ∝ π(x), generating a chain.

x0 =⇒ x1 =⇒ . . . xt =⇒︸︷︷︸
K(xt |xt−1)

xt+1 =⇒ . . . xt+τ ∼ π̃(x)

I Within the Monte Carlo (MC) techniques:
I [Gilks et al. (1992)]: adaptive rejection sampling (ARS),
I [Gilks et al. (1995)]: adaptive rejection Metropolis sampling

(ARMS),

are samplers from univariate pdfs.
I They are often used within Gibbs sampling.
I Both techniques present different limitations.

I GOAL: Overcoming these drawbacks by proposing a more
general and efficient class of adaptive samplers.

2 / 24

Introduction

I Markov Chain Monte Carlo (MCMC) methods convert
samples from a proposal pdf q̃(x) ∝ q(x), into correlated
samples from a target pdf π̃(x) ∝ π(x), generating a chain.

x0 =⇒ x1 =⇒ . . . xt =⇒︸︷︷︸
K(xt |xt−1)

xt+1 =⇒ . . . xt+τ ∼ π̃(x)

I Within the Monte Carlo (MC) techniques:
I [Gilks et al. (1992)]: adaptive rejection sampling (ARS),
I [Gilks et al. (1995)]: adaptive rejection Metropolis sampling

(ARMS),

are samplers from univariate pdfs.

I They are often used within Gibbs sampling.
I Both techniques present different limitations.

I GOAL: Overcoming these drawbacks by proposing a more
general and efficient class of adaptive samplers.

2 / 24

Introduction

I Markov Chain Monte Carlo (MCMC) methods convert
samples from a proposal pdf q̃(x) ∝ q(x), into correlated
samples from a target pdf π̃(x) ∝ π(x), generating a chain.

x0 =⇒ x1 =⇒ . . . xt =⇒︸︷︷︸
K(xt |xt−1)

xt+1 =⇒ . . . xt+τ ∼ π̃(x)

I Within the Monte Carlo (MC) techniques:
I [Gilks et al. (1992)]: adaptive rejection sampling (ARS),
I [Gilks et al. (1995)]: adaptive rejection Metropolis sampling

(ARMS),

are samplers from univariate pdfs.
I They are often used within Gibbs sampling.
I Both techniques present different limitations.

I GOAL: Overcoming these drawbacks by proposing a more
general and efficient class of adaptive samplers.

2 / 24

Introduction

I Markov Chain Monte Carlo (MCMC) methods convert
samples from a proposal pdf q̃(x) ∝ q(x), into correlated
samples from a target pdf π̃(x) ∝ π(x), generating a chain.

x0 =⇒ x1 =⇒ . . . xt =⇒︸︷︷︸
K(xt |xt−1)

xt+1 =⇒ . . . xt+τ ∼ π̃(x)

I Within the Monte Carlo (MC) techniques:
I [Gilks et al. (1992)]: adaptive rejection sampling (ARS),
I [Gilks et al. (1995)]: adaptive rejection Metropolis sampling

(ARMS),

are samplers from univariate pdfs.
I They are often used within Gibbs sampling.
I Both techniques present different limitations.

I GOAL: Overcoming these drawbacks by proposing a more
general and efficient class of adaptive samplers.

2 / 24

Performance

I The performance of an MCMC method depends strictly on
the discrepancy between proposal, q and target, π.

I If proposal=target, we have an exact sampler.

x x x

q(x) ⇡(x) ⇡(x) ⇡(x)q(x)
q(x)

“better” “better”

↵ ⇡ 1...in a independent MH, for instance...

I Need of adapting the proposal density, while ensuring
ergodicity.

3 / 24

Performance

I The performance of an MCMC method depends strictly on
the discrepancy between proposal, q and target, π.

I If proposal=target, we have an exact sampler.

x x x

q(x) ⇡(x) ⇡(x) ⇡(x)q(x)
q(x)

“better” “better”

↵ ⇡ 1...in a independent MH, for instance...

I Need of adapting the proposal density, while ensuring
ergodicity.

3 / 24

Performance

I The performance of an MCMC method depends strictly on
the discrepancy between proposal, q and target, π.

I If proposal=target, we have an exact sampler.

x x x

q(x) ⇡(x) ⇡(x) ⇡(x)q(x)
q(x)

“better” “better”

↵ ⇡ 1...in a independent MH, for instance...

I Need of adapting the proposal density, while ensuring
ergodicity.

3 / 24

Adaptive procedures

I Parametric: Learn parameters of the proposal (location
and/or scale parameter).

I Non-parametric: Approximate the target via non-parametric
procedures (as in kernel density estimation).

I Simple idea: Update the proposal taking into account the
histogram of the generated samples (after “burn-in”):

x1, . . . , xt , . . . , xt+τ . . .

x

proposal �t (1� �t)⇥ random walk ⇥

4 / 24

Adaptive procedures

I Parametric: Learn parameters of the proposal (location
and/or scale parameter).

I Non-parametric: Approximate the target via non-parametric
procedures (as in kernel density estimation).

I Simple idea: Update the proposal taking into account the
histogram of the generated samples (after “burn-in”):

x1, . . . , xt , . . . , xt+τ . . .

x

proposal �t (1� �t)⇥ random walk ⇥

4 / 24

other useful information

I We have several evaluations of the target pdf available (at
least at each state of the chain).

x1, . . . , xt , . . . , xt+τ ,

π(x1), . . . , π(xt), . . . , π(xt+τ).

I Can we incorporate all this information (or a subset) in the
learning procedure?

I AIM: Interpolative construction of a proposal q which depends
on a subset St ⊂ {x1, . . . , xt},

q̃(x) = q̃t(x) ∝ qt(x |St).

I Adaptive proposal =⇒ adaptive MCMC.

5 / 24

other useful information

I We have several evaluations of the target pdf available (at
least at each state of the chain).

x1, . . . , xt , . . . , xt+τ ,

π(x1), . . . , π(xt), . . . , π(xt+τ).

I Can we incorporate all this information (or a subset) in the
learning procedure?

I AIM: Interpolative construction of a proposal q which depends
on a subset St ⊂ {x1, . . . , xt},

q̃(x) = q̃t(x) ∝ qt(x |St).

I Adaptive proposal =⇒ adaptive MCMC.

5 / 24

Interpolation procedures

I Consider a set of support points St = {s1, . . . , smt}, and

V (x) = log[π(x)], Wt(x) = log[qt(x |St)].

I Interpolation procedure:

€

V (x)

€

s1

€

s3

€

s5

€

s2

€

s4

€

Wt (x)

(a) P2: log-domain

€

V (x)

€

s1

€

s3

€

s5

€

s2

€

s4

€

Wt (x)

(b) P3: log-domain

!

p(x)

!

s1

!

s3

!

s5

!

s2

!

s4!

" t (x)

!

s6

qt(x|St)

�(x)

(c) P4: pdf-domain

6 / 24

Interpolation procedures

I Similar to the constructions in the adaptive rejection sampling
(ARS) [Gilks et al., 1992] and adaptive rejection Metropolis
sampling (ARMS) methods [Gilks et al., 1995].

€

s1

€

s2

€

s3

€

w1(x)€

w2 (x)

€

w3(x)

€

V (x)

€

Wt (x)

(d) log-domain (ARS)

€

V (x)

€

Wt (x)

€

s1

€

s3

€

s4

€

s5

€

s6

€

s2
(e) P1: log-domain (ARMS)

I ARS: only for log-concave pdfs.

I ARMS: sometimes incomplete adaptation.

7 / 24

Interpolation procedures

(f) P4: |St | = 6 (g) P4: |St | = 7 (h) P4: |St | = 8

(i) P4: |St | = 9 (j) P4: |St | > 100

I Here the points are not adaptively chosen.

8 / 24

Drawing from qt

1. Calculate analytically the area below each piece, i.e.,

∫ sj+1

sj

qt(x |St)dx = Aj , j = 0, . . . ,mt ,

denoting s0 = −∞ and smt+1 = +∞.

2. Choose a j∗-th piece according to

ωj =
Aj∑n
j=1 Aj

, j = 0, . . . ,mt .

3. Draw a sample x ′ from qt(x |St) with x ∈ (sj∗ , sj∗+1).

P2 → exponential pieces
P3 → uniform pieces
P4 → linear pieces

9 / 24

Computational cost - efficiency

I More points: better approximation of the target ⇒ more
efficiency (i.e., less correlation ⇔ faster convergence).

I More points: to draw from qt is more costly.

mt ↑ =⇒ efficiency ↑ + computational cost ↑

I Desired adaptive strategy: manage the set St in order to
build a “good” proposal with a small number mt of points,
keeping the ergodicity of the sampler.

10 / 24

Adaptive Sticky Metropolis (ASM)

1. Construction of the proposal: Build a proposal qt(x |St),
using the set St = {s1, . . . , smt} (e.g., using P1, P2, P3 and P4).

2. MH step:

2.1 Draw x ′ from q̃t(x) ∝ qt(x |St).
2.2 Set xt+1 = x ′ and z = xt with probability

α = 1 ∧ π(x ′)qt(xt |St)

π(xt)qt(x ′|St)
,

and set xt+1 = xt and z = x ′, with probability 1− α.

3. Test to update St : Set

St+1 = St ∪ {z} with prob. Pa = η(dt(z)),

otherwise St+1 = St .
I dt(z)⇒ a positive measure of the distance in z between the

qt and π.
I η : R+ → [0, 1]⇒ increasing, with η(0) = 0, η(∞) = 1.

11 / 24

Adaptive Sticky Metropolis (ASM)

1. Construction of the proposal: Build a proposal qt(x |St),
using the set St = {s1, . . . , smt} (e.g., using P1, P2, P3 and P4).

2. MH step:

2.1 Draw x ′ from q̃t(x) ∝ qt(x |St).
2.2 Set xt+1 = x ′ and z = xt with probability

α = 1 ∧ π(x ′)qt(xt |St)

π(xt)qt(x ′|St)
,

and set xt+1 = xt and z = x ′, with probability 1− α.

3. Test to update St : Set

St+1 = St ∪ {z} with prob. Pa = η(dt(z)),

otherwise St+1 = St .
I dt(z)⇒ a positive measure of the distance in z between the

qt and π.
I η : R+ → [0, 1]⇒ increasing, with η(0) = 0, η(∞) = 1.

11 / 24

Adaptive Sticky Metropolis (ASM)

1. Construction of the proposal: Build a proposal qt(x |St),
using the set St = {s1, . . . , smt} (e.g., using P1, P2, P3 and P4).

2. MH step:

2.1 Draw x ′ from q̃t(x) ∝ qt(x |St).
2.2 Set xt+1 = x ′ and z = xt with probability

α = 1 ∧ π(x ′)qt(xt |St)

π(xt)qt(x ′|St)
,

and set xt+1 = xt and z = x ′, with probability 1− α.

3. Test to update St : Set

St+1 = St ∪ {z} with prob. Pa = η(dt(z)),

otherwise St+1 = St .

I dt(z)⇒ a positive measure of the distance in z between the
qt and π.

I η : R+ → [0, 1]⇒ increasing, with η(0) = 0, η(∞) = 1.

11 / 24

Adaptive Sticky Metropolis (ASM)

1. Construction of the proposal: Build a proposal qt(x |St),
using the set St = {s1, . . . , smt} (e.g., using P1, P2, P3 and P4).

2. MH step:

2.1 Draw x ′ from q̃t(x) ∝ qt(x |St).
2.2 Set xt+1 = x ′ and z = xt with probability

α = 1 ∧ π(x ′)qt(xt |St)

π(xt)qt(x ′|St)
,

and set xt+1 = xt and z = x ′, with probability 1− α.

3. Test to update St : Set

St+1 = St ∪ {z} with prob. Pa = η(dt(z)),

otherwise St+1 = St .
I dt(z)⇒ a positive measure of the distance in z between the

qt and π.

I η : R+ → [0, 1]⇒ increasing, with η(0) = 0, η(∞) = 1.

11 / 24

Adaptive Sticky Metropolis (ASM)

1. Construction of the proposal: Build a proposal qt(x |St),
using the set St = {s1, . . . , smt} (e.g., using P1, P2, P3 and P4).

2. MH step:

2.1 Draw x ′ from q̃t(x) ∝ qt(x |St).
2.2 Set xt+1 = x ′ and z = xt with probability

α = 1 ∧ π(x ′)qt(xt |St)

π(xt)qt(x ′|St)
,

and set xt+1 = xt and z = x ′, with probability 1− α.

3. Test to update St : Set

St+1 = St ∪ {z} with prob. Pa = η(dt(z)),

otherwise St+1 = St .
I dt(z)⇒ a positive measure of the distance in z between the

qt and π.
I η : R+ → [0, 1]⇒ increasing, with η(0) = 0, η(∞) = 1.

11 / 24

Control test: Update of St

x
z1 z2

1
d(1)

d(2)

d(2) d(1)

Pa = ⌘(dt(z))

⌘(d)

d

qt(x|St)⇡(x)

Z

X
|⇡(x)� qt(x|St)|dx! 0 =) Pa ! 0

We obtain, at the same time, both:

I Efficiency: we add points where (and when) exactly needed.

I Bounded computational cost: since Pa → 0, mT is
controlled.

Exactly as in the ARS [Gilks et al., 1992].

12 / 24

Control test: Update of St

x
z1 z2

1
d(1)

d(2)

d(2) d(1)

Pa = ⌘(dt(z))

⌘(d)

d

qt(x|St)⇡(x)

Z

X
|⇡(x)� qt(x|St)|dx! 0 =) Pa ! 0

We obtain, at the same time, both:

I Efficiency: we add points where (and when) exactly needed.

I Bounded computational cost: since Pa → 0, mT is
controlled.

Exactly as in the ARS [Gilks et al., 1992].

12 / 24

Control test: Update of St

x
z1 z2

1
d(1)

d(2)

d(2) d(1)

Pa = ⌘(dt(z))

⌘(d)

d

qt(x|St)⇡(x)

Z

X
|⇡(x)� qt(x|St)|dx! 0 =) Pa ! 0

We obtain, at the same time, both:

I Efficiency: we add points where (and when) exactly needed.

I Bounded computational cost: since Pa → 0, mT is
controlled.

Exactly as in the ARS [Gilks et al., 1992].

12 / 24

An example of ASM

1. Build qt(x |St).

2. Draw x ′ ∼ q̃t(x) ∝ qt(x |St).

3. Set xt+1 = x ′ and z = xt with probability

α = 1 ∧ π(x ′)qt(xt |St)

π(xt)qt(x ′|St)
,

otherwise set xt+1 = xt and z = x ′.

4. Draw u′ ∼ U([0, 1]). If

u′ ≥ min[π(z), qt(z |St)]

max[π(z), qt(z |St)]
,

set St+1 = St ∪ {z}, otherwise set St+1 = St .

13 / 24

Other possible tests

dt(z) η(d) Type

dt(z) = 1− min[π(z),qt(z|St)]
max[π(z),qt(z|St)] η(d) = d , random (similar to

with d ∈ [0, 1] ARS, ARMS)

dt(z) = |π(x)− qt(x |St)| η(d) = 1− exp(−d), random
with d ∈ R+

dt(z) = |π(x)− qt(x |St)| η(d) = 1 if dt(z) > ε deterministic
η(d) = 0 if dt(z) ≤ ε

I With the deterministic test, at some t∗ <∞, the adaptation
could be stopped, depending on ε.

14 / 24

Ergodicity

I Based on a result in [Holden et at., 2009]:
1. The adaptation procedure must use z instead of xt+1.

2. The proposal must satisfy the strong Doeblin’s condition, i.e.,
there exists a value at ∈ (0, 1], ∀t ∈ N, such that

1

at
q̃t(x |St) ≥ π̃(x), ∀x ∈ X .

I Fulfilled by ASM (note that we can always change the type
of tails used in the proposal construction).

I For more details, see

[Holden09]: L. Holden, R. Hauge, and M. Holden. “Adaptive

Independent Metropolis-Hastings.” The Annals of Applied Probability,

19(1): 395-413, 2009.

15 / 24

Ergodicity

I Based on a result in [Holden et at., 2009]:
1. The adaptation procedure must use z instead of xt+1.
2. The proposal must satisfy the strong Doeblin’s condition, i.e.,

there exists a value at ∈ (0, 1], ∀t ∈ N, such that

1

at
q̃t(x |St) ≥ π̃(x), ∀x ∈ X .

I Fulfilled by ASM (note that we can always change the type
of tails used in the proposal construction).

I For more details, see

[Holden09]: L. Holden, R. Hauge, and M. Holden. “Adaptive

Independent Metropolis-Hastings.” The Annals of Applied Probability,

19(1): 395-413, 2009.

15 / 24

Ergodicity

I Based on a result in [Holden et at., 2009]:
1. The adaptation procedure must use z instead of xt+1.
2. The proposal must satisfy the strong Doeblin’s condition, i.e.,

there exists a value at ∈ (0, 1], ∀t ∈ N, such that

1

at
q̃t(x |St) ≥ π̃(x), ∀x ∈ X .

I Fulfilled by ASM (note that we can always change the type
of tails used in the proposal construction).

I For more details, see

[Holden09]: L. Holden, R. Hauge, and M. Holden. “Adaptive

Independent Metropolis-Hastings.” The Annals of Applied Probability,

19(1): 395-413, 2009.

15 / 24

Adaptive Sticky Multiple Try Metropolis

1. Construction of the proposal: Build qt(x |St) using the set St .

2. MTM step:

2.1 Draw x ′1, . . . , x
′
M from q̃t(x) ∝ qt(x |St) and compute the

weights wt(x ′i) =
π(x′

i)
qt(x′

i |St) .

2.2 Select x ′ = x ′j ∈ {x ′1, ..., x ′M} with probability
wt(x′

j)PM
i=1 wt(x′

i)
.

2.3 Set the auxiliary points x∗i = x ′i and zi = x ′i , i 6= j and x∗j = xt .
2.4 Set xt+1 = x ′ and zj = xt with probability

α = min

[
1,

wt(x ′1) + · · ·+ wt(x ′M)

wt(x∗1) + · · ·+ wt(x∗M)

]
,

and set xt+1 = xt and zj = x ′j , with probability 1− α.

3. Test to update St : Set

St =

{ St−1 ∪ {zi} with prob. ηi (dt(zi)), i = 1, . . . ,M

St−1 with prob. 1−∑M
i=1 ηi (dt(zi)).

16 / 24

Adaptive Sticky Multiple Try Metropolis

1. Construction of the proposal: Build qt(x |St) using the set St .

2. MTM step:

2.1 Draw x ′1, . . . , x
′
M from q̃t(x) ∝ qt(x |St) and compute the

weights wt(x ′i) =
π(x′

i)
qt(x′

i |St) .

2.2 Select x ′ = x ′j ∈ {x ′1, ..., x ′M} with probability
wt(x′

j)PM
i=1 wt(x′

i)
.

2.3 Set the auxiliary points x∗i = x ′i and zi = x ′i , i 6= j and x∗j = xt .
2.4 Set xt+1 = x ′ and zj = xt with probability

α = min

[
1,

wt(x ′1) + · · ·+ wt(x ′M)

wt(x∗1) + · · ·+ wt(x∗M)

]
,

and set xt+1 = xt and zj = x ′j , with probability 1− α.

3. Test to update St : Set

St =

{ St−1 ∪ {zi} with prob. ηi (dt(zi)), i = 1, . . . ,M

St−1 with prob. 1−∑M
i=1 ηi (dt(zi)).

16 / 24

Adaptive Sticky Multiple Try Metropolis

1. Construction of the proposal: Build qt(x |St) using the set St .

2. MTM step:

2.1 Draw x ′1, . . . , x
′
M from q̃t(x) ∝ qt(x |St) and compute the

weights wt(x ′i) =
π(x′

i)
qt(x′

i |St) .

2.2 Select x ′ = x ′j ∈ {x ′1, ..., x ′M} with probability
wt(x′

j)PM
i=1 wt(x′

i)
.

2.3 Set the auxiliary points x∗i = x ′i and zi = x ′i , i 6= j and x∗j = xt .
2.4 Set xt+1 = x ′ and zj = xt with probability

α = min

[
1,

wt(x ′1) + · · ·+ wt(x ′M)

wt(x∗1) + · · ·+ wt(x∗M)

]
,

and set xt+1 = xt and zj = x ′j , with probability 1− α.

3. Test to update St : Set

St =

{ St−1 ∪ {zi} with prob. ηi (dt(zi)), i = 1, . . . ,M

St−1 with prob. 1−∑M
i=1 ηi (dt(zi)).

16 / 24

Adaptive Sticky Multiple Try Metropolis

1. Construction of the proposal: Build qt(x |St) using the set St .

2. MTM step:

2.1 Draw x ′1, . . . , x
′
M from q̃t(x) ∝ qt(x |St) and compute the

weights wt(x ′i) =
π(x′

i)
qt(x′

i |St) .

2.2 Select x ′ = x ′j ∈ {x ′1, ..., x ′M} with probability
wt(x′

j)PM
i=1 wt(x′

i)
.

2.3 Set the auxiliary points x∗i = x ′i and zi = x ′i , i 6= j and x∗j = xt .

2.4 Set xt+1 = x ′ and zj = xt with probability

α = min

[
1,

wt(x ′1) + · · ·+ wt(x ′M)

wt(x∗1) + · · ·+ wt(x∗M)

]
,

and set xt+1 = xt and zj = x ′j , with probability 1− α.

3. Test to update St : Set

St =

{ St−1 ∪ {zi} with prob. ηi (dt(zi)), i = 1, . . . ,M

St−1 with prob. 1−∑M
i=1 ηi (dt(zi)).

16 / 24

Adaptive Sticky Multiple Try Metropolis

1. Construction of the proposal: Build qt(x |St) using the set St .

2. MTM step:

2.1 Draw x ′1, . . . , x
′
M from q̃t(x) ∝ qt(x |St) and compute the

weights wt(x ′i) =
π(x′

i)
qt(x′

i |St) .

2.2 Select x ′ = x ′j ∈ {x ′1, ..., x ′M} with probability
wt(x′

j)PM
i=1 wt(x′

i)
.

2.3 Set the auxiliary points x∗i = x ′i and zi = x ′i , i 6= j and x∗j = xt .
2.4 Set xt+1 = x ′ and zj = xt with probability

α = min

[
1,

wt(x ′1) + · · ·+ wt(x ′M)

wt(x∗1) + · · ·+ wt(x∗M)

]
,

and set xt+1 = xt and zj = x ′j , with probability 1− α.

3. Test to update St : Set

St =

{ St−1 ∪ {zi} with prob. ηi (dt(zi)), i = 1, . . . ,M

St−1 with prob. 1−∑M
i=1 ηi (dt(zi)).

16 / 24

Adaptive Sticky Multiple Try Metropolis

1. Construction of the proposal: Build qt(x |St) using the set St .

2. MTM step:

2.1 Draw x ′1, . . . , x
′
M from q̃t(x) ∝ qt(x |St) and compute the

weights wt(x ′i) =
π(x′

i)
qt(x′

i |St) .

2.2 Select x ′ = x ′j ∈ {x ′1, ..., x ′M} with probability
wt(x′

j)PM
i=1 wt(x′

i)
.

2.3 Set the auxiliary points x∗i = x ′i and zi = x ′i , i 6= j and x∗j = xt .
2.4 Set xt+1 = x ′ and zj = xt with probability

α = min

[
1,

wt(x ′1) + · · ·+ wt(x ′M)

wt(x∗1) + · · ·+ wt(x∗M)

]
,

and set xt+1 = xt and zj = x ′j , with probability 1− α.

3. Test to update St : Set

St =

{ St−1 ∪ {zi} with prob. ηi (dt(zi)), i = 1, . . . ,M

St−1 with prob. 1−∑M
i=1 ηi (dt(zi)).

16 / 24

Ergodicity

I The proof of ASMTM is an extension of the results in
[Holden09] . See

L. Martino, R. Casarin, F. Leisen, D. Luengo, ”Adaptive Sticky

Generalized Metropolis”, arXiv:1308.3779, 2013.

I The proof is valid for ASM and ASMTM for a generic
construction of the proposal (not only univariate).

I The proposal must fulfill the Doeblin’s condition.

17 / 24

Higher dimensions: ASM within Gibbs

I This approach is not confined only to the one-dimensional
case. It can be used to the multidimensional setting via a
suitable interpolation procedure (still an open problem).

I Sticky proposals: easy to be implemented in one-dimension.

I Within Gibbs: we need efficient samplers to draw from the
full-conditional pdfs (as close as possible to an exact sampler).

18 / 24

Higher dimensions: ASM within Gibbs

I This approach is not confined only to the one-dimensional
case. It can be used to the multidimensional setting via a
suitable interpolation procedure (still an open problem).

I Sticky proposals: easy to be implemented in one-dimension.

I Within Gibbs: we need efficient samplers to draw from the
full-conditional pdfs (as close as possible to an exact sampler).

18 / 24

Higher dimensions: ASM within Gibbs

I This approach is not confined only to the one-dimensional
case. It can be used to the multidimensional setting via a
suitable interpolation procedure (still an open problem).

I Sticky proposals: easy to be implemented in one-dimension.

I Within Gibbs: we need efficient samplers to draw from the
full-conditional pdfs (as close as possible to an exact sampler).

18 / 24

Numerical results

I Target pdf:

π̃(x) ∝ π(x) = 0.5N (7, 1) + 0.5N (−7, 0.1), (1)

I Goal: Estimating the mean of X ∼ π̃(x) (E [X] = 0).
I Experimental Setting:

I Use all the generated samples (T = 5000) without removing
any “burn-in” period.

I Perform 2000 runs using an initial S0 = {−10,−8, 5, 10}.
I We compare with the Standard ARMS method [Gilks et al.,

1995] which corresponds to the first row of Table 1.

I ARMS is often used within Gibbs.

19 / 24

Numerical results
Algorithm MSE ACF(1) ACF(10) ACF(50) mT Time

ARMS-P1 (Gilks) 10.0395 0.4076 0.3250 0.2328 118.1912 1.0000
ARMS-P2 15.6756 0.8955 0.7210 0.4639 7.6126 0.1195
ARMS-P3 0.2398 0.8753 0.4410 0.0296 131.3360 0.3589
ARMS-P4 0.2874 0.8882 0.4758 0.0418 42.8872 0.2291

ASM-P1 3.0277 0.1284 0.1099 0.0934 152.6301 1.2274
ASM-P2 2.9952 0.1306 0.1125 0.0929 71.1478 0.2757
ASM-P3 0.0290 0.0535 0.0165 0.0077 279.6570 0.6494
ASM-P4 0.0354 0.0354 0.0195 0.0086 84.8742 0.3297

ASMTM-P1 (M = 10) 0.6720 0.0726 0.0696 0.0624 159.0060 2.3547
ASMTM-P1 (M = 50) 0.1666 0.0430 0.0395 0.0316 160.7579 6.4518
ASMTM-P2 (M = 10) 0.5632 0.0588 0.0525 0.0443 72.1628 1.1291
ASMTM-P2 (M = 50) 0.1156 0.0345 0.0303 0.0231 72.5270 4.3802
ASMTM-P3 (M = 10) 0.0105 0.0045 0.0001 0.0001 315.7808 2.6022
ASMTM-P3 (M = 50) 0.0099 0.0063 0.0001 0.0001 360.7323 10.5935
ASMTM-P4 (M = 10) 0.0108 0.0036 0.0011 0.0014 92.6660 1.8618
ASMTM-P4 (M = 50) 0.0098 0.0001 0.0001 0.0001 101.7775 7.2475

Table: Different columns: the mean square error (MSE), the autocorrelation

function (ACF(k)) at different lags, k = 1, 10, 50, the final number of support

points (mT), the computing times normalized w.r.t. ARMS [Gilks et al., 95]

(Time).

20 / 24

Numerical results

I ASM schemes provide better results than the standard
ARMS in all cases, regardless of the scheme used to
build the proposal.

I ASM-P4 is also faster then ARMS (-P1, [Gilks95]), providing
better results.

I ASM is also quite robust w.r.t. the choice of the initial set S0.

I Good results are also obtained with other kinds of
distributions; see

L. Martino, R. Casarin, F. Leisen, D. Luengo, ”Adaptive Sticky

Generalized Metropolis”, arXiv:1308.3779, 2013.

21 / 24

Numerical results

0 1000 2000 3000 4000 50000

0.2

0.4

0.6

0.8

1

(k) α vs t (ASM-P4)

0 1000 2000 3000 4000 50000

20

40

60

80

100

(l) mt vs t (ASM-P4)

Figure: Averaged α and number of support points mt over the ASM chain
iterations. In each plot the results of the ASM-P4 with random test Ex-3,
β = 1, (line without symbol) is compared with the results of a deterministic
test with ε = 0.005 (square), ε = 0.01 (cross), ε = 0.1 (triangle) and ε = 0.2
(circle).

22 / 24

Conclusions

Advantages:

I ASM is a valid alternative for ARS and ARMS.

I Good performance ⇒ ASM is an asymptotically exact
sampler.

I Really useful within Gibbs.

Limitations:

I Difficult to build the proposal in higher-dimension.

Future:

I Can we use a Gaussian Process (GP) as proposal pdf?
this can solve the previous limitation . . . (work in progress)

23 / 24

I Thank you very much!

I Any questions?

Main references:
[Gilks92]: W. R. Gilks and P. Wild. “Adaptive Rejection Sampling for Gibbs

Sampling.” Applied Statistics, 41(2): 337-348, 1992.

[Gilks95]: W. R. Gilks, N. G. Best and K. K. C. Tan. “Adaptive Rejection

Metropolis Sampling within Gibbs Sampling.” Applied Statistics, 44(4):

455-472, 1995.

[Holden09]: L. Holden, R. Hauge, and M. Holden. “Adaptive Independent

Metropolis-Hastings.” The Annals of Applied Probability, 19(1): 395-413,

2009.

Further info:
L. Martino, R. Casarin, F. Leisen, D. Luengo, ”Adaptive Sticky Generalized

Metropolis”, arXiv:1308.3779, 2013.

24 / 24

