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» Markov Chain Monte Carlo (MCMC) methods convert
samples from a proposal pdf §(x) o g(x), into correlated
samples from a target pdf 7(x) o< 7(x), generating a chain.

X0 = X] = ...Xt = Xpp1 = ...Xppr ~ 7T(X)
K (xe|xe—1)

» Within the Monte Carlo (MC) techniques:
» [Gilks et al. (1992)]: adaptive rejection sampling (ARS),
» [Gilks et al. (1995)]: adaptive rejection Metropolis sampling
(ARMS),
are samplers from univariate pdfs.
» They are often used within Gibbs sampling.
» Both techniques present different limitations.
» GOAL: Overcoming these drawbacks by proposing a more
general and efficient class of adaptive samplers.
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.in a 1ndependent MH, for instance..
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» Need of adapting the proposal density, while ensuring
ergodicity.
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» Parametric: Learn parameters of the proposal (location
and/or scale parameter).

» Non-parametric: Approximate the target via non-parametric
procedures (as in kernel density estimation).

» Simple idea: Update the proposal taking into account the
histogram of the generated samples (after “burn-in"):

Xlyeoo gy Xtgoo oy Xpfr o on

proposal mmm (3, x random walk + (1 — [315)><
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» We have several evaluations of the target pdf available (at
least at each state of the chain).

Xlyeoey Xty ooy Xty

w(x1)y ..o, m(xe), .o, T(Xerr)-

» Can we incorporate all this information (or a subset) in the
learning procedure?

» AIM: Interpolative construction of a proposal g which depends
on a subset ¢ C {x1,...,x¢},

d(x) = Ge(x) o< ge(x|St).

» Adaptive proposal = adaptive MCMC.



INTERPOLATION PROCEDURES

» Consider a set of support points St = {si1,...,5m,}, and
V(x) =log[r(x)],  Wi(x) = log[qe(x|St)]-

» Interpolation procedure:
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(a) P2: log-domain (b) P3: log-domain (c) P4: pdf-domain



INTERPOLATION PROCEDURES

» Similar to the constructions in the adaptive rejection sampling
(ARS) [Gilks et al., 1992] and adaptive rejection Metropolis
sampling (ARMS) methods [Gilks et al., 1995].

V(x)
W|(X) : W}(X)
5 C— 5 TR
(d) log-domain (ARS) (e) P1: log-domain (ARMS)

» ARS: only for log-concave pdfs.

» ARMS: sometimes incomplete adaptation.



INTERPOLATION PROCEDURES

(f) P4: S| =6 (g) P4: |S]| =7 (h) P4: |S| =8

(i) P4: |S:| =9 (j) P4: |S:| > 100

» Here the points are not adaptively chosen.



DRAWING FROM @

1. Calculate analytically the area below each piece, i.e.,
Sj+1 )
/ q:(x|Se)dx = A;,  j=0,...,my,
5
denoting sp = —o0 and sp,+1 = +00.
2. Choose a j*-th piece according to
A; .
S A J
Zj:l \j

3. Draw a sample x’ from q;(x|S¢) with x € (sj«, Sj41).

wj = =0,...,mq.

P2 — exponential pieces
P3 — uniform pieces
P4 — linear pieces



COMPUTATIONAL COST - EFFICIENCY

» More points: better approximation of the target = more
efficiency (i.e., less correlation < faster convergence).

» More points: to draw from g; is more costly.

m; T = efficiency T + computational cost T

» Desired adaptive strategy: manage the set S; in order to
build a “good” proposal with a small number m; of points,
keeping the ergodicity of the sampler.



ADAPTIVE STICKY METROPOLIS (ASM)

1. Construction of the proposal: Build a proposal g:(x|S¢),
using the set S = {s1,...,5m,} (e.g. using P1, P2, P3 and P4).

11 /24



ADAPTIVE STICKY METROPOLIS (ASM)

1. Construction of the proposal: Build a proposal g:(x|S¢),

using the set S = {s1,...,5m,} (e.g. using P1, P2, P3 and P4).

2. MH step:

2.1 Draw x’ from g:(x) o< q¢(x|S:)-
2.2 Set x;11 = x" and z = x; with probability

m(x")qe (x| St)
7(xt)qe(x'|Se)’

and set x;11 = x; and z = x’, with probability 1 — «.

a=1A



ADAPTIVE STICKY METROPOLIS (ASM)

1.

Construction of the proposal: Build a proposal g:(x|S¢),
using the set S = {s1,...,5m,} (e.g. using P1, P2, P3 and P4).

. MH step:

2.1 Draw x’ from g:(x) o< q¢(x|S:)-
2.2 Set x;11 = x" and z = x; with probability

m(x")qe (x| St)
7(xe)qe(x'[Se)’

and set x;11 = x; and z = x’, with probability 1 — «.

a=1A

. Test to update S;: Set

Sty1=8:U{z} with prob. P, =n(d:(2)),

otherwise S;11 = St.



ADAPTIVE STICKY METROPOLIS (ASM)

1. Construction of the proposal: Build a proposal g:(x|S¢),

using the set S = {s1,...,5m,} (e.g. using P1, P2, P3 and P4).

2. MH step:
2.1 Draw x’ from g:(x) o< q¢(x|S:)-
2.2 Set x;11 = x" and z = x; with probability

m(x")qe (x| St)
7(xt)qe(x'|Se)’

and set x;11 = x; and z = x’, with probability 1 — «.

a=1A

3. Test to update S;: Set
Sty1=8:U{z} with prob. P, =n(d:(2)),

otherwise S;11 = St.

» d;(z) = a positive measure of the distance in z between the
g: and .



ADAPTIVE STICKY METROPOLIS (ASM)

1. Construction of the proposal: Build a proposal g:(x|S¢),

using the set S = {s1,...,5m,} (e.g. using P1, P2, P3 and P4).

2. MH step:
2.1 Draw x’ from g:(x) o< q¢(x|S:)-
2.2 Set x;11 = x" and z = x; with probability

m(x")qe (x| St)
7(xt)qe(x'|Se)’

and set x;11 = x; and z = x’, with probability 1 — «.

a=1A

3. Test to update S;: Set
Sty1=8:U{z} with prob. P, =n(d:(2)),

otherwise Sty1 = St.
» d;(z) = a positive measure of the distance in z between the
g: and .
» n:RT — [0,1] = increasing, with 7(0) =0, n(cc) = 1.
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CONTROL TEST: UPDATE OF S;

21 129

T FERFE) d

/ (@) — (@l S)lde — 0 = P, —0
X

We obtain, at the same time, both:

» Efficiency: we add points where (and when) exactly needed.

» Bounded computational cost: since P, — 0, mt is
controlled.

Exactly as in the ARS [Gilks et al., 1992].



AN EXAMPLE OF ASM

1. Build qt(X|St).
2. Draw x’ ~ §¢(x) o< ge(x|St).
3. Set x;y1 = x’ and z = x; with probability

7(x")qe(x¢|St)

a=1N—"F—F-—"-°=,
7(xt)qe(X'[St)

otherwise set x;11 = x; and z = x'.
4. Draw u" ~U([0,1]). If

,  min[7(z), g:(z|St)]
= max(7(z), q¢(z|S:)]’

u

set S¢11 = St U {z}, otherwise set S¢11 = St.



OTHER POSSIBLE TESTS

| de(2) | n(d) | Type |
di(z) =1-— % n(d) =d, random (similar to
with d € [0, 1] ARS, ARMS)
de(z) = |m(x) — qe(x|Se)| |n(d) =1 — exp(—d), random
with d € RT

de(z) = |7(x) — qe(x|St)| In(d) =1if de(z) > €| deterministic
n(d) =0if di(z) <e

» With the deterministic test, at some t* < 0o, the adaptation
could be stopped, depending on &.
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ERrRGoODICITY

» Based on a result in [Holden et at., 2009]:

1. The adaptation procedure must use z instead of x;41.
2. The proposal must satisfy the strong Doeblin’s condition, i.e.,
there exists a value a; € (0,1], Vt € N, such that

1
;Fh(XISt) > #(x), VxedX.
¢

» Fulfilled by ASM (note that we can always change the type
of tails used in the proposal construction).

» For more details, see

[Holden09]: L. Holden, R. Hauge, and M. Holden. “Adaptive
Independent Metropolis-Hastings.” The Annals of Applied Probability,
19(1): 395-413, 20009.
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ADAPTIVE STICKY MULTIPLE TRY METROPOLIS

1. Construction of the proposal: Build g;(x|S;) using the set S;.

2. MTM step:
2.1 Draw xq,...,xp, from g:(x) o g(x|S;) and compute the

weights w;(x/) = q:(r)s,.’xlgr)'

2.2 Select x" = x| € {x{,..., x)y} with probability Z,\,,M&
i=1

2y we(x7)”

2.3 Set the auxiliary points x;" = x{ and z; = x/, i # j and X" = x;.

2.4 Set x;11 = x’ and z; = x; with probabilit
s ; y

we(xq) + - - - + welxyy)
wie(X{) + -+ 4 welxgy)

a=min |1,

)

and set x;11 = Xx; and z; = XJ’ with probability 1 — a.



ADAPTIVE STICKY MULTIPLE TRY METROPOLIS

1. Construction of the proposal: Build g;(x|S;) using the set S;.
2. MTM step:

2.1 Draw xq,...,xp, from g:(x) o g(x|S;) and compute the
ich N — m(x])
weights w(x!) PRCUIAE

2.2 Select x' = x; € {xq, ..., xyy } with probability %

2.3 Set the auxiliary points x;" = x{ and z; = x/, i # j and X" = x;.
2.4 Set x;11 = x" and z; = x; with probability

a=min |1 Wt(X]/') R Wt(XI/V,)

? *

we(xg) + - wi(xy) |

and set x;11 = Xx; and z; = XJ’ with probability 1 — a.

3. Test to update S;: Set

S St—1U{z} with prob. ni(di(z)),i=1,...,M
Tl S with prob. 1 — "M ni(di(z))).



ERrRGoODICITY

» The proof of ASMTM is an extension of the results in
[Holden09] . See

L. Martino, R. Casarin, F. Leisen, D. Luengo, " Adaptive Sticky
Generalized Metropolis”, arXiv:1308.3779, 2013.

» The proof is valid for ASM and ASMTM for a generic
construction of the proposal (not only univariate).

» The proposal must fulfill the Doeblin's condition.
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HIGHER DIMENSIONS: ASM WITHIN GIBBS

» This approach is not confined only to the one-dimensional
case. It can be used to the multidimensional setting via a
suitable interpolation procedure (still an open problem).

» Sticky proposals: easy to be implemented in one-dimension.

» Within Gibbs: we need efficient samplers to draw from the

full-conditional pdfs (as close as possible to an exact sampler).



NUMERICAL RESULTS

» Target pdf:
#(x) o< w(x) = 0.5N(7,1) + 0.5 (=7,0.1), (1)
» Goal: Estimating the mean of X ~ #(x) (E[X] = 0).

v

Experimental Setting:

» Use all the generated samples (T = 5000) without removing
any “burn-in" period.
» Perform 2000 runs using an initial So = {—10, —8,5,10}.

We compare with the Standard ARMS method [Gilks et al.,
1995] which corresponds to the first row of Table 1.

ARMS is often used within Gibbs.

v

v



NUMERICAL RESULTS

[Algorithm [ MSE [ACF(1) [ACF(10) [ACF(50) [ my [ Time |
ARMS-P1 (Gilks) 10.0395 | 0.4076 | 0.3250 0.2328 |118.1912 | 1.0000
ARMS-P2 15.6756 | 0.8955 | 0.7210 0.4639 7.6126 0.1195
ARMS-P3 0.2398 | 0.8753 | 0.4410 0.0296 |131.3360 | 0.3589
ARMS-P4 0.2874 | 0.8882 | 0.4758 0.0418 | 42.8872 | 0.2291
ASM-P1 3.0277 | 0.1284 0.1099 0.0934 |152.6301 | 1.2274
ASM-P2 2.9952 | 0.1306 | 0.1125 0.0929 | 71.1478 | 0.2757
ASM-P3 0.0290 | 0.0535 | 0.0165 0.0077 |279.6570 | 0.6494
ASM-P4 0.0354 | 0.0354 | 0.0195 0.0086 84.8742 | 0.3297

ASMTM-P1 (M =10) | 0.6720 | 0.0726 | 0.0696 0.0624 [159.0060 | 2.3547
ASMTM-P1 (M = 50) | 0.1666 | 0.0430 | 0.0395 0.0316 [160.7579 | 6.4518
ASMTM-P2 (M = 10) | 0.5632 | 0.0588 | 0.0525 0.0443 | 72.1628 | 1.1291
)
)

ASMTM-P2 (M = 50) | 0.1156 | 0.0345 | 0.0303 0.0231 | 72.5270 | 4.3802
ASMTM-P3 (M =10) | 0.0105 | 0.0045 | 0.0001 0.0001 [315.7808 | 2.6022
ASMTM-P3 (M = 50) | 0.0099 | 0.0063 | 0.0001 0.0001 [360.7323 |10.5935
ASMTM-P4 (M =10) | 0.0108 | 0.0036 | 0.0011 0.0014 | 92.6660 | 1.8618
ASMTM-P4 (M = 50) | 0.0098 | 0.0001 | 0.0001 0.0001 [101.7775 | 7.2475

TABLE: Different columns: the mean square error (MSE), the autocorrelation
function (ACF(k)) at different lags, kK = 1,10, 50, the final number of support
points (m7), the computing times normalized w.r.t. ARMS [Gilks et al., 95]
(Time).



NUMERICAL RESULTS

» ASM schemes provide better results than the standard
ARMS in all cases, regardless of the scheme used to
build the proposal.

» ASM-P4 is also faster then ARMS (-P1, [Gilks95]), providing
better results.

» ASM is also quite robust w.r.t. the choice of the initial set Sp.

» Good results are also obtained with other kinds of
distributions; see

L. Martino, R. Casarin, F. Leisen, D. Luengo, " Adaptive Sticky
Generalized Metropolis”, arXiv:1308.3779, 2013.



NUMERICAL RESULTS
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FIGURE: Averaged a and number of support points m; over the ASM chain
iterations. In each plot the results of the ASM-P4 with random test Ex-3,

B =1, (line without symbol) is compared with the results of a deterministic
test with e = 0.005 (square), ¢ = 0.01 (cross), € = 0.1 (triangle) and e = 0.2
(circle).



CONCLUSIONS

Advantages:
» ASM is a valid alternative for ARS and ARMS.

» Good performance = ASM is an asymptotically exact
sampler.

» Really useful within Gibbs.
Limitations:
» Difficult to build the proposal in higher-dimension.

Future:

» Can we use a Gaussian Process (GP) as proposal pdf?
this can solve the previous limitation ... (work in progress)



» Thank you very much!

» Any questions?
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