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Example 14

Consider the following signal:

r|n| = cos(n)

(@) Compute the Zeta Transform: X (Z ) — ?

(b) Say what are the zeros of the Zeta Transform.
(c) Say what the poles of the Zeta Transform and say what is the ROC.

(d) If the stand. FT exists, compute it.



Example 14

(@) Thinking to the signal x[n]: the signal is growing as n grows,
oscillating... but it is growing (even fast).
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This signal has a continuous/constant oscillation and has infinite
energy.

Then, the Zeta Transform does not exists !!!
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The Zeta Transform does not exists !!!
(b) The Zeta Transform does not exists, then there are not “zeros”

(c) The Zeta Transform does not exists, then is like that all the
complex planes is formed by “poles” (all points in the complex plan
are poles...) (ho voy a requirer esta respuesta...diciendo que no
existe ya se entiende el resto....)

(d) Therefore, the stand. FT does not exists neither since the Zeta
transform Is an extension of the stand. FT (which admits more
signals...)
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Consider the following signal:

2ln] = 2"u[—n] + (i)n uln — 1]

(@) Compute the Zeta Transform: X (Z ) — ?

(b) Say what are the zeros of the Zeta Transform.
(c) Say what the poles of the Zeta Transform and say what is the ROC.

(d) If the stand. FT exists, compute it.
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(a) Using the direct definition:
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X(Z> — 1 —1%75 | lez—ll — ;21 ——l  ONLY IF 1z < 1 and iz_l < 1 jointly !
1 | 1/4
T1-1y -1 |
7 ROC: |z| < 2 and |z| > 1 jointly !!

(1-52) (== 3) l
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summary: X(z) = 1A=L) (-1

1
ROC: |z| < 2 and |z| > 1 jointly !!

(b) zeros: two zeros, one at z=0 and one at z=Infinity.

(c) poles and ROC: two poles at z=2 and z=1/4,

1
ROC: |z| < 2 and |z| > 1 jointly !!




Example 15

(d) We can make two considerations (we have two way of proceeding):

- We can observe that the signal has finite energy, hence it admits
standard FT1. Then, we can compute the stand. FT by the definition or by
the property of a delta (its FT is a complex exponential in frequency).

- The second way is to have a look to the ROC: does the ROC include
the circle of radius 1? YES, then standard FT exists. Moreover, we know
that setting r=1 Iin the Zeta Transform, we obtain the FT, I.e.,
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Consider the following signal:

Zziéi
k=0

n—k

Compute the Zeta Transform: X ( z ) — 7
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We can observe that the signal can be re-written as:
O
rn| = Z(S[n — k| —— ZE‘[TL] — U[TL]
k=0

and we have already computed (in other example) that

1 2
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Consider the following signal:
rfn] = Y (=1)*o[n—k
k=0

z) ="

(2)

OO
Compute the Zeta Transform: X
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We can observe that the signal can be re-written as:

t[n] =) (=1)*6[n — k] —> z[n] = (—1)"u]
k=0
XN (=4) ulLn]
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(d) Compare with the system represented by |
Are they the same system? explain.
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z=Infinity Is one zero, and the rest of 4 zeros are the solutions of the equation:
Zeros: z*+224+1=0
- 2 2 L
settingt =22 —-t"+¢t+1=0
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o In this specific case, you could also do
tlzejT 2=Vt z=—t

obtaining also the symmetric solution (with respect

j 4 to the zero-origin point; i.e., odd-symmetry)

t2 — 6 3 =" ’V
Solving t = 2° in the complex plane:
Recall that e72™F = 1
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k=0,1,2.3...
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Varying k=0,1,2,3,... the only different points are 4:
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After a look we can directly observe that:
- two zeros z=-1 and z=1 (and another zero is z=\infinity)
- there are other 4 zeros (see next slide)

- two poles are z=-1 and z=1; another pole is z=0 (of order 5)
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- there are other 4 zeros; in fact, we can write:

X —1l=((z+1D(z—-1)(z*+2°+1)
X —1=( =1 (" + 27+ 1)

this can be obtained:

z6—1 22—1
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- there are other 4 zeros, solution AGAIN of this equation:

Zeros: z*+224+1=0 T
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- there are other 4 zeros, solution AGAIN of this equation:

Zeros: z*+224+1=0 T
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Consider Zeta transforms of the input x[n] and output y[n] of a system:

X(z)=1-2"
Y(2) ==z

find H(z) of the impulse response h[n].
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X(z)=1-=z2
Y(2) ==z

Y(2)
H(z) =
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Consider Zeta transforms of the input x[n] and the impulse response h[n] of a
system:

X(z)=1-2"
H(z)=2—-3

find Y(z) of the output y[n] of the system.
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Consider the system with the following poles and zeros:

2O/ OS S . | CGAOS
!

(a) say if the system is stable.

(b) write the difference equation corresponding to the system.
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Consider the causal system with the following poles and zeros:

FOLCS ' - | CGAC:
!

(a) say if the system is stable.

(b) write the difference equation corresponding to the system.
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xX-marks ==> poles, circles ==> zeros
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then: -
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Consider the following observations:
- X[n] is real and a right-sided signal
- X(z) has exactly 2 poles

- X(z) has a 2 zeros at z=0

1

- One pole of the two polesisat 2 =— —€

2

J3
- X(1)=8/3, i.e., X(z)=8/3 at z=1
Find X(z).
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Since the signal is real and has two poles, the second pole must be the

conjugate of 1
2= —e’?2
2
then, the other pole is:
1 .x
2= —e ’2
2

Thus, we have already all the poles. Infinity is not one of them.
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Since we also know that it has only 2 zeros at z=0, we can write:

2
Z
X(z) = A . .
) = A 0572 (2 — 0.5¢—5772)
- (2—0.55)(2 + 0.55)
2
<
= A~ :

where A Is a constant that we have to obtain.
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considering the last condition:




Questions?



