Solved Problems - Zeta Transform part 3

Linear systems and circuit applications
Discrete Time Systems

Luca Martino — <u>luca.martino@urjc.es</u> — <u>http://www.lucamartino.altervista.org</u> Laura Cornejo — <u>laura.cornejo@urjc.es</u>

Consider the following signal:

$$x[n] = \cos(n)$$

- (a) Compute the Zeta Transform: X(z)=?
- (b) Say what are the zeros of the Zeta Transform.
- (c) Say what the poles of the Zeta Transform and say what is the ROC.
- (d) If the stand. FT exists, compute it.

(a) Thinking to the signal x[n]: the signal is growing as n grows, oscillating... but it is growing (even fast).

This signal has a continuous/constant oscillation and has infinite energy.

Then, the Zeta Transform does not exists !!!

The Zeta Transform does not exists !!!

- (b) The Zeta Transform does not exists, then there are not "zeros"
- (c) The Zeta Transform does not exists, then is like that all the complex planes is formed by "poles" (all points in the complex plan are poles...) (no voy a requirer está respuesta...diciendo que no existe ya se entiende el resto....)
- (d) Therefore, the stand. FT does not exists neither since the Zeta transform is an extension of the stand. FT (which admits more signals...)

Consider the following signal:

$$x[n] = 2^{n}u[-n] + \left(\frac{1}{4}\right)^{n}u[n-1]$$

- (a) Compute the Zeta Transform: X(z)=?
- (b) Say what are the zeros of the Zeta Transform.
- (c) Say what the poles of the Zeta Transform and say what is the ROC.
- (d) If the stand. FT exists, compute it.

(a) Using the direct definition:

$$X(z) = \sum_{n=-\infty}^{+\infty} x[n]z^{-n}$$

$$= \sum_{n=-\infty}^{0} 2^n z^{-n} + \sum_{n=1}^{\infty} \left(\frac{1}{4}\right)^n z^{-n}$$

$$= \sum_{k=0}^{\infty} 2^{-k} z^k + \sum_{n=1}^{\infty} \left(\frac{1}{4}\right)^n z^{-n}$$

$$= \sum_{k=0}^{\infty} \left(\frac{1}{2}z\right)^k + \sum_{n=1}^{\infty} \left(\frac{1}{4}z^{-1}\right)^n$$

$$= \frac{1}{1 - \frac{1}{2}z} + \frac{1}{4}z^{-1} \frac{1}{1 - \frac{1}{4}z^{-1}}$$

ONLY IF
$$\left|\frac{1}{2}z\right| < 1$$
 and $\left|\frac{1}{4}z^{-1}\right| < 1$ jointly !!

$$X(z) = \frac{1}{1 - \frac{1}{2}z} + \frac{1}{4}z^{-1} \frac{1}{1 - \frac{1}{4}z^{-1}}$$

$$= \frac{1}{1 - \frac{1}{2}z} + \frac{1/4}{z - \frac{1}{4}}$$

$$= \frac{\frac{7}{8}z}{(1 - \frac{1}{2}z)(z - \frac{1}{4})}$$

ONLY IF
$$\left|\frac{1}{2}z\right| < 1$$
 and $\left|\frac{1}{4}z^{-1}\right| < 1$ jointly !!

ROC: $|z| < 2 \text{ and } |z| > \frac{1}{4} \text{ jointly !!}$

summary:
$$X(z) = \frac{\frac{7}{8}z}{\left(1 - \frac{1}{2}z\right)\left(z - \frac{1}{4}\right)}$$

ROC:
$$|z| < 2 \text{ and } |z| > \frac{1}{4} \text{ jointly !!}$$

(b) zeros: two zeros, one at z=0 and one at z=Infinity.

(c) poles and ROC: two poles at z=2 and z=1/4,

ROC:
$$|z| < 2 \text{ and } |z| > \frac{1}{4} \text{ jointly !!}$$

- (d) We can make two considerations (we have two way of proceeding):
- We can observe that the signal has finite energy, hence it admits standard FT. Then, we can compute the stand. FT by the definition or by the property of a delta (its FT is a complex exponential in frequency).
- The second way is to have a look to the ROC: does the ROC include the circle of radius 1? YES, then standard FT exists. Moreover, we know that setting r=1 in the Zeta Transform, we obtain the FT, i.e.,

$$z = re^{j\Omega} \Longrightarrow r = 1 \Longrightarrow z = e^{j\Omega}$$

$$X(z) = \frac{\frac{7}{8}z}{\left(1 - \frac{1}{2}z\right)\left(z - \frac{1}{4}\right)} \Longleftrightarrow X(\Omega) = \frac{\frac{7}{8}e^{j\Omega}}{\left(1 - \frac{1}{2}e^{j\Omega}\right)\left(e^{j\Omega} - \frac{1}{4}\right)}$$

Consider the following signal:

$$x[n] = \sum_{k=0}^{\infty} \delta[n-k]$$

Compute the Zeta Transform: X(z)=?

We can observe that the signal can be re-written as:

$$x[n] = \sum_{k=0}^{\infty} \delta[n-k] \longrightarrow x[n] = u[n]$$

and we have already computed (in other example) that

$$X(z) = \frac{1}{1 - z^{-1}} = \frac{z}{z - 1}$$

ROC: $\forall z \in \mathbb{C}$: such that |z| > 1

Consider the following signal:

$$x[n] = \sum_{k=0}^{\infty} (-1)^k \delta[n-k]$$

Compute the Zeta Transform: X(z)=?

We can observe that the signal can be re-written as:

$$x[n] = \sum_{k=0}^{\infty} (-1)^k \delta[n-k] \longrightarrow x[n] = (-1)^n u[n]$$

$$x[n] = \sum_{k=0}^{\infty} (-1)^n u[n]$$

$$x(2) = \sum_{k=0}^{\infty} (-1)^n e^{-k} = \sum_{k=0}^{\infty} (-2^{-1})^k = \frac{1}{1+2^{-1}} e^{-k}$$

$$1-2^{-1} e^{-k}$$

```
Disserial sistema discreto, de Jorma que: En instante n, sa l'ida = suma/de entrada en n-1, n-3 y n-5.

a) H(z)? Pepreventar diagrama de palas y ceras, ROC.

b) hon I? Estable, Causal?

C) Cumple requisitors un sitt y causal?
```

(d) Compare with the system represented by $H(\mathcal{E}) = \frac{\mathcal{E}^6 - 1}{\mathcal{E}^7 - \mathcal{E}^5}$ Are they the same system? explain.

a)
$$y \in n = x \in n-1 + x \in n-3 + x \in n-5$$

T.2. ($y(2) = x(2) [2^{-1} + 2^{-3} + 2^{-5}]$

$$H(z) = \frac{Y(z)}{X(z)} = z^{-1} + z^{-3} + z^{-5} = \frac{1}{z'} + \frac{1}{z^3} + \frac{1}{z^5} = \frac{z^4 + z^2 + 1}{z^5}$$

z=Infinity is one zero, and the rest of 4 zeros are the solutions of the equation:

Zeros:
$$z^4 + z^2 + 1 = 0$$

setting
$$t = z^2 \rightarrow t^2 + t + 1 = 0$$

$$z=0$$
 (de orden 5)
 $t=z^2 \rightarrow t^2+t+1=0 \rightarrow t=-\frac{t}{2}$ $\frac{t}{2}$ $\frac{t}{2}$ $\frac{1}{2}$ \frac

$$t_1 = e^{j\frac{2\pi}{3}}$$

$$t_2 = e^{j\frac{4\pi}{3}}$$

In this specific case, you could also do

$$z = \sqrt{t} \quad z = -\sqrt{t}$$

obtaining also the symmetric solution (with respect to the zero-origin point; i.e., odd-symmetry)

Recall that $e^{j2\pi k} = 1$

$$z = \left(e^{j\frac{2\pi}{3} + 2\pi k}\right)^{1/2}$$

$$z = \left(e^{j\frac{4\pi}{3} + 2\pi k}\right)^{1/2}$$

$$z = e^{j\frac{\pi}{3} + \pi k}$$

$$z = e^{j\frac{2\pi}{3} + \pi k}$$

$$k = 0, 1, 2, 3...$$

Varying k=0,1,2,3,... the only different points are 4:


```
b) h cn ] = S[n-1] + S[n-3] + S[n-5]
       Micando H(2) con
       propiedades (tablas)
    CAUSAL: hcn ] = 0, n < 0
    ESTABLE: ROC incluye Circulo Unitario.
```

(2)
$$H(z) = \frac{z^{6}-1}{z^{7}-z^{5}} = \frac{z^{6}-1}{z^{5}\cdot(z^{2}-1)}$$

After a look we can directly observe that:

- two zeros z=-1 and z=1 (and another zero is z=\infinity)
- there are other 4 zeros (see next slide)
- two poles are z=-1 and z=1; another pole is z=0 (of order 5)

- there are other 4 zeros; in fact, we can write:

$$z^{6} - 1 = (z+1)(z-1)(z^{4} + z^{2} + 1)$$
$$z^{6} - 1 = (z^{2} - 1)(z^{4} + z^{2} + 1)$$

this can be obtained:

$$z^{2} - 1$$
 $z^{4} + z^{2} + 1$

- there are other 4 zeros, solution AGAIN of this equation:

Zeros:
$$z^4 + z^2 + 1 = 0$$

-2 (ormo almbos sistemas tienen igual diagrama polos y ceros y misma ROC => Sí comple requisitos de enunciado.

- there are other 4 zeros, solution AGAIN of this equation:

Zeros:
$$z^4 + z^2 + 1 = 0$$

-2 (ormo almbos sistemas tienen igual diagrama polos y ceros y misma ROC => Sí comple requisitos de enunciado.

Consider Zeta transforms of the input x[n] and output y[n] of a system:

$$X(z) = 1 - z^2$$

$$Y(z) = z$$

find H(z) of the impulse response h[n].

$$X(z) = 1 - z^2$$

$$Y(z) = z$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{z}{1 - z^2}$$

Consider Zeta transforms of the input x[n] and the impulse response h[n] of a system:

$$X(z) = 1 - z^2$$

$$H(z) = z - 3$$

find Y(z) of the output y[n] of the system.

$$X(z) = 1 - z^2$$

$$H(z) = z - 3$$

$$Y(z) = H(z)X(z) = (z-3)(1-z^2)$$

Consider the system with the following poles and zeros:

$$\frac{POLOS}{2P_{1}} = \frac{1}{\sqrt{2}}e^{j\frac{\pi}{4}}$$

$$\frac{CGROS}{2C_{1}} = e^{-j\frac{\pi}{4}}$$

$$\frac{2C_{2}}{2C_{2}} = e^{-j\frac{\pi}{4}}$$

$$\frac{2C_{2}}{2C_{3}} = -12$$

- (a) say if the system is stable.
- (b) write the difference equation corresponding to the system.

Consider the causal system with the following poles and zeros:

$$\frac{POLOS}{ZP_{1}} = \frac{1}{\sqrt{2}}e^{j\frac{\pi}{4}}$$

$$\frac{ZP_{2}}{ZP_{2}} = \frac{1}{\sqrt{2}}e^{-j\frac{\pi}{4}}$$

$$\frac{ZP_{3}}{ZP_{3}} = 0.18$$

- (a) say if the system is stable.
- (b) write the difference equation corresponding to the system.

x-marks ==> poles, circles ==> zeros

$$POLOS$$
:

 $ZP_1 = \frac{1}{\sqrt{2}}e^{j\frac{\pi}{4}}$
 $ZC_1 = e^{j\frac{\pi}{2}}$
 $ZC_2 = e^{-j\frac{\pi}{4}}$
 $ZC_3 = -1/2$

Como es causal, BOC = circunj. cuyo radio se corresponde al valor del módulo del polo mois alejado del ovigen.

Como contiene C.U. => ESTABLE. | ROC: 121>0'8

Ec. en diferencia)?
$$Y(z) (1-1/8z^{-1}+1/3z^{-2}-0/4z^{-3}) = X(z) (1+1/2z^{-1}+z^{-2}+1/2z^{-3})$$

$$T.z^{-1}()$$

$$y[n] - 1/8 y[n-1] + 1/3 y[n-2] - 0/4 y[n-3] = X[n] + X[n-1]1/2 + X[n-2] + 1/2 X[n-3]$$

- a) Obtener, sin emplear transformadas, honz y ec. en diferencias que caracterizan el sistema.
- b) 2 se toata de un sinterna ausal? Razonar respuerta.
- c) Obtener H(Z). Dibujar diagrama polos y ceres y Roc

a)
$$x cn 3 = -2 S [n-2]$$

 $y fn 3 = -2 S [n 3 + 2 S [n-1] + 12 S [n-2]$
 $y cn 3 = x cn 3 * h en 3 = [-2 S [n-2]] * h en 3 = 2 S [n 3 + 2 S [n-1] + 12 S [n-2]$
 $= -2 S [n 3 + 2 S [n-1] + 12 S [n-2]$

b) El sistema es <u>no ausal</u> -> Salida en instante n, depende de la entrada en instantes posteriores.

(a)
$$H(z) = z^2 - z - 6$$

Polos: $z_{p_1} = z_{p_2} \rightarrow \infty$

Ceres: $\int z_{c_1} = 3$
 $\int z_{c_2} = -2$

ROC: $f(z) = z_{c_2} \rightarrow \infty$

ROC: $f(z) = z_{c_2} \rightarrow \infty$

Consider the following observations:

- x[n] is real and a right-sided signal
- X(z) has exactly 2 poles
- X(z) has a 2 zeros at z=0
- One pole of the two poles is at $\,z=rac{1}{2}e^{jrac{\pi}{2}}$
- X(1)=8/3, i.e., X(z)=8/3 at z=1

Find X(z).

Since the signal is real and has two poles, the second pole must be the conjugate of $1_{\cdot,\pi}$

$$z = \frac{1}{2}e^{j\frac{\pi}{2}}$$

then, the other pole is:

$$z = \frac{1}{2}e^{-j\frac{\pi}{2}}$$

Thus, we have already all the poles. Infinity is not one of them.

Since we also know that it has only 2 zeros at z=0, we can write:

$$X(z) = A \frac{z^2}{(z - 0.5e^{j\pi/2})(z - 0.5e^{-j\pi/2})}$$

$$= A \frac{z^2}{(z - 0.5j)(z + 0.5j)}$$

$$= A \frac{z^2}{z^2 + \frac{1}{4}}$$

where A is a constant that we have to obtain.

considering the last condition:

$$X(1) = A \frac{1^2}{1^2 + \frac{1}{4}} = \frac{8}{3}$$
$$A = \frac{85}{34} = \frac{10}{3}$$

Questions?