Solved Problems - Zeta Transform

Linear systems and circuit applications
Discrete Time Systems

Luca Martino — <u>luca.martino@urjc.es</u> — <u>http://www.lucamartino.altervista.org</u> Laura Cornejo — <u>laura.cornejo@urjc.es</u>

Consider the following signal:

$$x[n] = \delta[n + 5]$$

- (a) Compute the Zeta Transform: X(z)=?
- (b) Say what are the zeros of the Zeta Transform.
- (c) Say what the poles of the Zeta Transform and say what is the ROC.
- (d) If the stand. FT exists, compute it.

(a) Using the direct definition:

 $X(z) = z^5$

$$X(z) = \sum_{n = -\infty}^{+\infty} x[n]z^{-n}$$

$$= \sum_{n = -\infty}^{+\infty} \delta[n+5]z^{-n} = z^{-(-5)} = z^{5}$$

(b) Zeros of X(z):

$$X(z) = z^5 = 0 \Longrightarrow z = 0$$

a zero of order 5 at z=0 (5 coincident zeros at z=0).

(c) Poles of X(z):

$$X(z) = z^5$$

We have a multiple pole (of order 5) at infinity.

The the ROC is all the complex plane except infinity !!! Namely, in formula:

ROC:
$$\forall z \in \mathbb{C} \setminus \{\infty\}$$

- (d) We can make two considerations (we have two way of proceeding):
- We can observe that the signal has finite energy, hence it admits standard FT. Then, we can compute the stand. FT by the definition or by the property of a delta (its FT is a complex exponential in frequency).
- The second way is to have a look to the ROC: does the ROC include the circle of radius 1? YES, then standard FT exists. Moreover, we know that setting r=1 in the Zeta Transform, we obtain the FT, i.e.,

$$z = re^{j\Omega} \Longrightarrow r = 1 \Longrightarrow z = e^{j\Omega}$$

$$X(z) = z^5 \Longrightarrow X(\Omega) = (e^{j\Omega})^5 = e^{j5\Omega}$$

Consider the following signal:

$$x[n] = \delta[n-5]$$

- (a) Compute the Zeta Transform: X(z)=?
- (b) Say what are the zeros of the Zeta Transform.
- (c) Say what the poles of the Zeta Transform and say what is the ROC.
- (d) If the stand. FT exists, compute it.

(a) Using the direct definition:

$$X(z) = \sum_{n = -\infty}^{+\infty} x[n]z^{-n}$$

$$= \sum_{n = -\infty}^{+\infty} \delta[n - 5]z^{-n} = z^{-5}$$

$$X(z) = z^{-5} = \frac{1}{z^{5}}$$

(b) Zeros of X(z):

$$X(z) = \frac{1}{z^5}$$

we have multiple zero (of order 5) at z=Infinity.

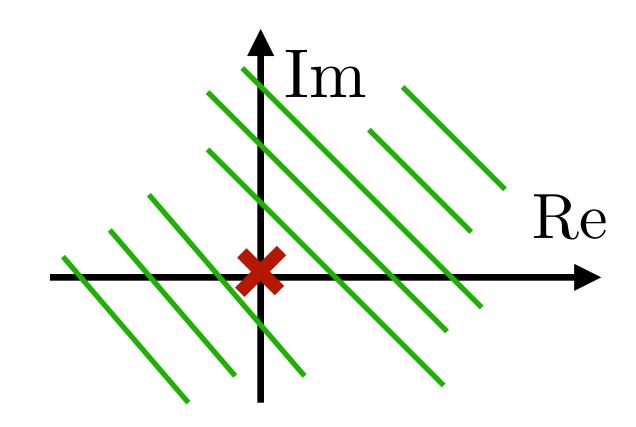
(c) Poles of X(z):

$$X(z) = \frac{1}{z^5}$$

We have a multiple pole (of order 5) at z=0.

The the ROC is all the complex plane except zero !!! Namely, in formula:

ROC:
$$\forall z \in \mathbb{C} \setminus \{0\}$$



- (d) We can make two considerations (we have two way of proceeding):
- We can observe that the signal has finite energy, hence it admits standard FT. Then, we can compute the stand. FT by the definition or by the property of a delta (its FT is a complex exponential in frequency).
- The second way is to have a look to the ROC: does the ROC include the circle of radius 1? YES, then standard FT exists. Moreover, we know that setting r=1 in the Zeta Transform, we obtain the FT, i.e.,

$$z = re^{j\Omega} \Longrightarrow r = 1 \Longrightarrow z = e^{j\Omega}$$

$$X(z) = z^{-5} \Longrightarrow X(\Omega) = (e^{j\Omega})^{-5} = e^{-j5\Omega} = \frac{1}{e^{j5\Omega}}$$

Consider the following signal:

$$x[n] = \delta[n]$$

- (a) Compute the Zeta Transform: X(z)=?
- (b) Say what are the zeros of the Zeta Transform.
- (c) Say what the poles of the Zeta Transform and say what is the ROC.
- (d) If the stand. FT exists, compute it.

(a) Using the direct definition:

$$X(z) = \sum_{n=-\infty}^{+\infty} x[n]z^{-n}$$

$$= \sum_{n=-\infty}^{+\infty} \delta[n]z^{-n} = z^{-0} = 1$$

$$X(z) = 1$$

(b) Zeros of X(z):

$$X(z) = 1$$

There are no zeros of X(z)!

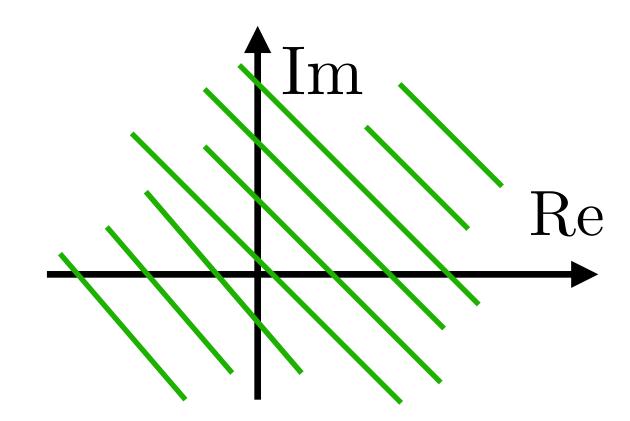
(c) Poles of X(z):

$$X(z) = 1$$

We have no poles!!!

The the ROC is all the complex plane!!! Namely, in formula:

 $ROC: \forall z \in \mathbb{C}$



- (d) We can make two considerations (we have two way of proceeding):
- We can observe that the signal has finite energy, hence it admits standard FT. Then, we can compute the stand. FT by the definition or by the property of a delta (its FT is a complex exponential in frequency).
- The second way is to have a look to the ROC: does the ROC include the circle of radius 1? YES, then standard FT exists. Moreover, we know that setting r=1 in the Zeta Transform, we obtain the FT, i.e.,

$$z = re^{j\Omega} \Longrightarrow r = 1 \Longrightarrow z = e^{j\Omega}$$

 $X(z) = 1 \Longrightarrow X(\Omega) = 1$

Consider the following signal:

$$x[n] = \delta[n+5] + \delta[n-5]$$

- (a) Compute the Zeta Transform: X(z)=?
- (b) Say what are the zeros of the Zeta Transform.
- (c) Say what the poles of the Zeta Transform and say what is the ROC.
- (d) If the stand. FT exists, compute it.

(a) Using the direct definition:

$$X(z) = \sum_{n = -\infty}^{+\infty} x[n]z^{-n}$$

$$= \sum_{n = -\infty}^{+\infty} (\delta[n - 5] + \delta[n + 5])z^{-n} = z^{-5} + z^{5}$$

$$X(z) = \frac{1}{z^{5}} + z^{5} = \frac{1 + z^{10}}{z^{5}}$$

(b) Zeros of X(z):

$$X(z) = \frac{1+z^{10}}{z^5}$$

The zeros are:

- 10 different zeros (of order 1) which are the solutions in the complex plane of the equation:

$$1 + z^{10} = 0 \Longrightarrow z^{10} = -1$$

$$X(z) = \frac{1+z^{10}}{z^5}$$

Why infinity is not a zero? since

$$\lim_{z \to +\infty} X(z) \approx \frac{z^{10}}{z^5} = z^5 = \infty$$

$$z^{10} = -1$$

Recall that
$$e^{j2\pi k} = 1$$

and $e^{j\pi(2k+1)} = e^{j2\pi k + \pi} = -1$

$$z^{10} = e^{j\pi(2k+1)}$$

$$z = (e^{j\pi(2k+1)})^{1/10}$$

$$z = e^{j\frac{\pi(2k+1)}{10}}$$

for
$$k = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9$$

$$z = e^{j\frac{\pi}{10}}, z = e^{j\frac{3\pi}{10}}, z = e^{j\frac{\pi}{2}} = j, z = e^{j\frac{7\pi}{10}}, z = e^{j\frac{9\pi}{10}}, z = e^{j\frac{11\pi}{10}}, z = e^{j\frac{13\pi}{10}}, z = e^{j\frac{3\pi}{2}} = -j, z = e^{j\frac{17\pi}{10}}, z = e^{j\frac{19\pi}{10}}$$

Note that $e^{j\frac{21\pi}{10}} = e^{j\frac{\pi}{10}}$ and for all the z above $z^{10} = -1$.

(c) Poles of X(z):

$$X(z) = \frac{1+z^{10}}{z^5}$$

We have a multiple pole (of order 5) at z=0 (5 coincident poles at z=0) and a multiple pole (of order 10) at z=Infinity (5 coincident poles)

$$\lim_{z \to +\infty} X(z) \approx \frac{z^{10}}{z^5} = z^5 = \infty$$

The the ROC is all the complex plane except zero and Infinity!!! Namely, in formula:

ROC:
$$\forall z \in \mathbb{C} \setminus \{\infty\} \cup \{0\}$$

- (d) We can make two considerations (we have two way of proceeding):
- We can observe that the signal has finite energy, hence it admits standard FT. Then, we can compute the stand. FT by the definition or by the property of a delta (its FT is a complex exponential in frequency).
- The second way is to have a look to the ROC: does the ROC include the circle of radius 1? YES, then standard FT exists. Moreover, we know that setting r=1 in the Zeta Transform, we obtain the FT, i.e.,

$$z = re^{j\Omega} \Longrightarrow r = 1 \Longrightarrow z = e^{j\Omega}$$
$$X(z) = \frac{1 + z^{10}}{z^5} \Longrightarrow X(\Omega) = \frac{1 + e^{j10\Omega}}{e^{j5\Omega}}$$

Consider the following signal:

$$x[n] = \delta[n+5] + \delta[n] + \delta[n-5]$$

- (a) Compute the Zeta Transform: X(z)=?
- (b) Say what are the zeros of the Zeta Transform (at least say how many).
- (c) Say what the poles of the Zeta Transform and say what is the ROC.
- (d) If the stand. FT exists, compute it.

(a) Using the direct definition:

$$X(z) = \sum_{n = -\infty}^{+\infty} x[n]z^{-n}$$

$$= \sum_{n = -\infty}^{+\infty} (\delta[n - 5] + \delta[n] + \delta[n + 5])z^{-n} = z^5 + 1 + z^{-5}$$

$$X(z) = 1 + \frac{1}{z^5} + z^5 = \frac{z^5 + 1 + z^{10}}{z^5}$$

$$X(z) = \frac{z^{10} + z^5 + 1}{z^5}$$

(b) Zeros of X(z):

$$X(z) = \frac{z^{10} + z^5 + 1}{z^5}$$

The zeros are:

- 10 different zeros (of order 1) which are the solutions in the complex plane of the equation:

$$1 + z^5 + z^{10} = 0$$

Note that again:

$$\lim_{z \to +\infty} X(z) \approx \frac{z^{10}}{z^5} = z^5 = \infty$$

(c) Poles of X(z):
$$X(z) = \frac{z^{10} + z^5 + 1}{z^5}$$

We have a multiple pole (of order 5) at z=0 (5 coincident poles at z=Infinity) and a multiple pole (of order 5) at z=Infinity (5 coincident poles at z=Infinity).

The the ROC is all the complex plane except at zero and at Infinity!!! Namely, in formula:

ROC:
$$\forall z \in \mathbb{C} \setminus \{\infty\} \cup \{0\}$$

- (d) We can make two considerations (we have two way of proceeding):
- We can observe that the signal has finite energy, hence it admits standard FT. Then, we can compute the stand. FT by the definition or by the property of a delta (its FT is a complex exponential in frequency).
- The second way is to have a look to the ROC: does the ROC include the circle of radius 1? YES, then standard FT exists. Moreover, we know that setting r=1 in the Zeta Transform, we obtain the FT, i.e.,

$$z = re^{j\Omega} \Longrightarrow r = 1 \Longrightarrow z = e^{j\Omega}$$
$$X(z) = \frac{1 + z^5 + z^{10}}{z^5} \Longrightarrow X(\Omega) = \frac{1 + e^{j5\Omega} + e^{j10\Omega}}{e^{j5\Omega}}$$

Consider the following signal:

$$x[n] = 1$$

- (a) Compute the Zeta Transform: X(z)=?
- (b) Say what are the zeros of the Zeta Transform.
- (c) Say what the poles of the Zeta Transform and say what is the ROC.
- (d) If the stand. FT exists, compute it.

(a) Using the direct definition:

$$X(z) = \sum_{n=-\infty}^{+\infty} x[n]z^{-n}$$

$$= \sum_{n=-\infty}^{+\infty} z^{-n}$$

$$= \infty$$

(comparar con la serie geometrica...)

The Zeta Transform does not exists !!!

The Zeta Transform does not exists !!!

- (b) The Zeta Transform does not exists, then there are not "zeros"
- (c) The Zeta Transform does not exists, then is like that all the complex planes is formed by "poles" (all points in the complex plan are poles...) (no voy a requirer está respuesta...diciendo que no existe ya se entiende el resto....)
- (d) Therefore, the stand. FT does not exists neither since the Zeta transform is an extension of the stand. FT (which admits more signals...) This signal admits Fourier Series (as a degenerate periodic signal with infinite period) and Generalized FT.

Consider the following signal:

$$x[n] = u[n]$$

- (a) Compute the Zeta Transform: X(z)=?
- (b) Say what are the zeros of the Zeta Transform.
- (c) Say what the poles of the Zeta Transform and say what is the ROC.
- (d) If the stand. FT exists, compute it.

(a) Using the direct definition:

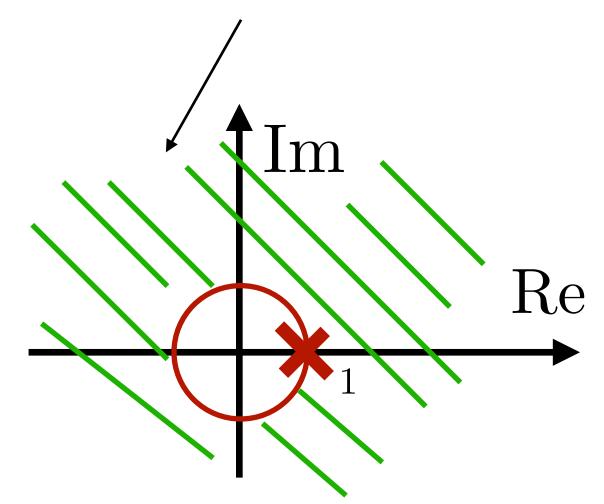
$$X(z) = \sum_{n=-\infty}^{+\infty} x[n]z^{-n} \qquad |z^{-1}| < 1 \Longrightarrow$$

$$= \sum_{n=0}^{+\infty} z^{-n}$$

$$= \sum_{n=0}^{+\infty} (z^{-1})^n$$

$$= \frac{1}{1-z^{-1}} \text{ ONLY IF } |z^{-1}| < 1$$

$$|z^{-1}| < 1 \Longrightarrow \left|\frac{1}{z}\right| < 1 \Longrightarrow |z| > 1$$
This is the ROC!!!



$$X(z) = \frac{1}{1 - z^{-1}} = \frac{z}{z - 1}$$

$$\sum_{n=N_1}^{N_2} r^n = r^{N_1} \frac{1 - r^{N_2 - N_1 + 1}}{1 - r} = \frac{r^{N_1} - r^{N_2 + 1}}{1 - r}$$

$$\sum_{n=0}^{N_2} r^n = rac{1-r^{N_2+1}}{1-r}$$
 Where we have used this one $\sum_{n=0}^{\infty} r^n = rac{1}{1-r}$ is $|r| < 1$

(b) Zeros of X(z):
$$X(z) = \frac{1}{1-z^{-1}} = \frac{z}{z-1}$$

The zeros are:

- 1 zero (simple - single) at z=0

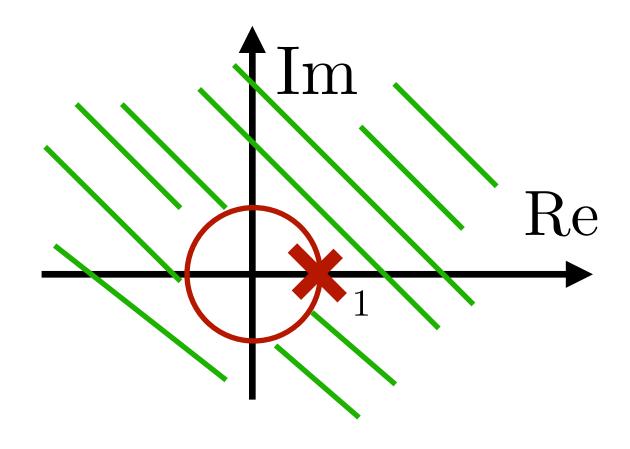
Note that:
$$\lim_{z\to +\infty} X(z) \approx \frac{z}{z} = 1$$

(c) Poles of X(z):
$$X(z) = \frac{1}{1-z^{-1}} = \frac{z}{z-1}$$

We have a (simple - single) pole at z=1

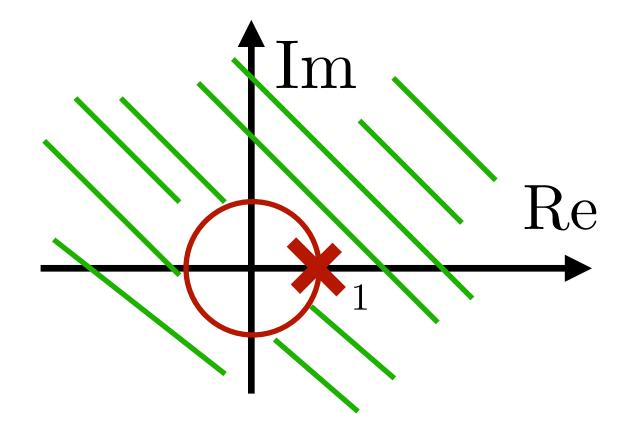
The the ROC is all z such that |z|>1:

ROC: $\forall z \in \mathbb{C}$: such that |z| > 1



- (d) We can make two considerations (we have two way of proceeding):
- We can observe that the signal has infinite energy, hence the standard FT does not exist!!
- The second way is to have a look to the ROC: does the ROC include the circle of radius 1? No, then standard FT DOES NOT exists.

ROC: $\forall z \in \mathbb{C}$: such that |z| > 1



The circle of radius 1 is not included in the ROC.

Consider the following signal:

$$x[n] = u[-n]$$

- (a) Compute the Zeta Transform: X(z)=?
- (b) Say what are the zeros of the Zeta Transform.
- (c) Say what the poles of the Zeta Transform and say what is the ROC.
- (d) If the stand. FT exists, compute it.

(a) Using the direct definition:

$$X(z) = \sum_{n=-\infty}^{+\infty} x[n]z^{-n}$$

$$= \sum_{n=-\infty}^{0} z^{-n}$$

$$= \sum_{k=0}^{+\infty} z^{k}$$

$$k = -n \to n = -k$$

We have to recall:

$$\sum_{n=N_1}^{N_2} r^n = r^{N_1} \frac{1 - r^{N_2 - N_1 + 1}}{1 - r} = \frac{r^{N_1} - r^{N_2 + 1}}{1 - r}$$

$$\sum_{n=0}^{N_2} r^n = rac{1-r^{N_2+1}}{1-r}$$
 We will use this one $\sum_{n=0}^{\infty} r^n = rac{1}{1-r}$ is $|r| < 1$

Then:

$$X(z) = \sum_{n=-\infty}^{+\infty} x[n]z^{-n}$$

$$= \sum_{n=-\infty}^{0} z^{-n}$$

$$= \sum_{k=0}^{+\infty} z^{k}$$
This is the ROC !!!
$$= \frac{1}{1-z}$$
ONLY IF $|z| < 1$

$$X(z) = \frac{1}{1-z}$$

The zeros are:

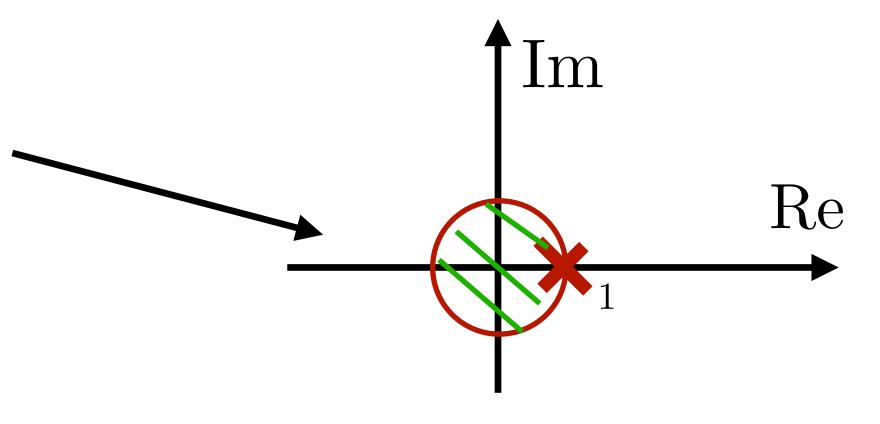
- 1 zero (simple - single) at z=Infinity

$$X(z) = \frac{1}{1-z}$$

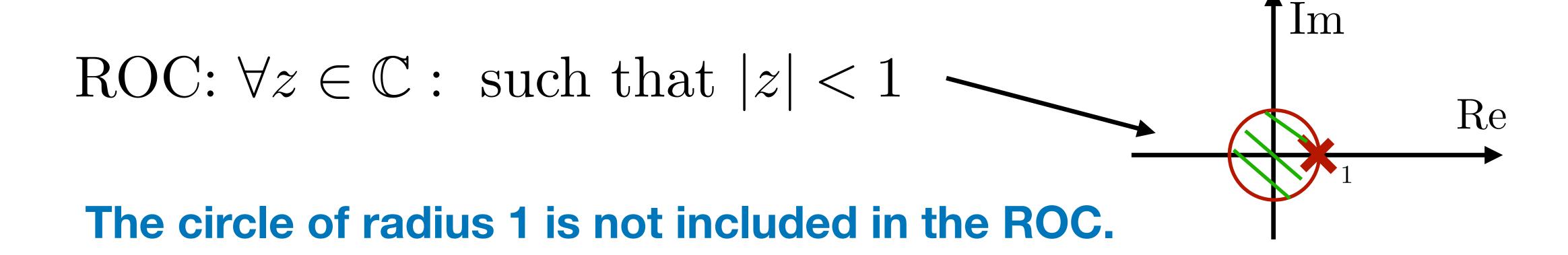
We have a (simple - single) pole at z=-1

The the ROC is all z such that |z|<1:

ROC: $\forall z \in \mathbb{C}$: such that |z| < 1



- (d) We can make two considerations (we have two way of proceeding):
- We can observe that the signal has infinite energy, hence the standard FT does not exist!!
- The second way is to have a look to the ROC: does the ROC include the circle of radius 1? No, then standard FT DOES NOT exists.



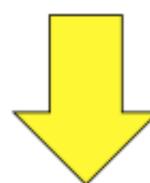
Consider the following signal:

$$x[n] = \sum_{j=0}^{L-1} a_n \delta[n-j]$$

- (a) Compute the Zeta Transform: X(z)=?
- (b) Say what the poles of the Zeta Transform and say what is the ROC.

ZT of finite length signals

For instance:
$$x[n] = \sum_{j=0}^{L-1} a_n \delta[n-j]$$



$$\begin{split} X(z) &= \sum_{n=-\infty}^{\infty} x[n]z^{-n} = \sum_{n=0}^{L-1} x[n]z^{-n} \\ &= x[0] + x[1]z^{-1} + x[2]z^{-2} + \dots + x[L-1]z^{-(L-1)} \\ &= \frac{x[0]z^{L-1} + x[1]z^{L-2} + x[2]z^{L-3} + \dots + x[L-1]}{z^{L-1}} \end{split}$$

ROCs of ZT of finite length signals

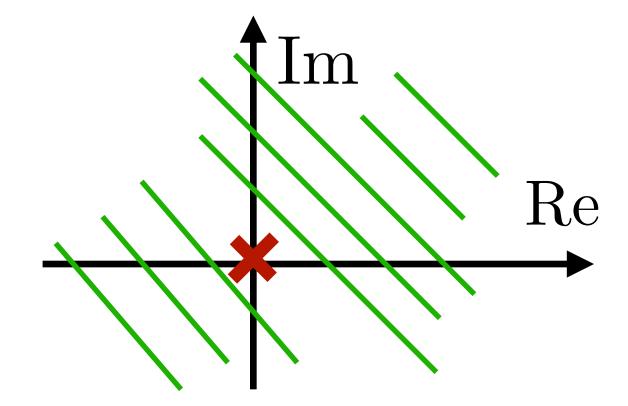
If x[n] has finite length, the ROC is all the complex plane except POSSIBLY the points z=0 and/or z=Infinity.

The ROC is all the complex plane just for x[n]=Delta[n].

in our specific case, the poles are just at z=0, since at z=Infinity, we have:

$$\lim_{z \to +\infty} X(z) \approx \frac{z^{L-1}}{z^{L-1}} = 1$$

in fact, it is a right-sided sequence-signal!!



Questions?