Practice - LAB - part 1

1. Consider the two random variables X and Y that takes values $\left\{x_{1}, \ldots, x_{N}\right\}$ and $\left\{y_{1}, \ldots, y_{M}\right\}$ (you can decide N, M and the values of x_{n} 's and y_{m} 's).
2. Define a joint probability mass $p(x, y)$.
3. Compute all the conditional and the marginal densities of the two random variables X and Y.
4. Compute all the possible entropies and the mutual information.
5. Check some inequalities in the slides (for instance $H(X, Y) \leq H(X)+H(Y)$).
6. Plot something similar to a diagram-bar as in the slides, in order to show the relationships among all the possible entropies and the mutual information.
7. Change the joint probability mass $p(x, y)$ and repeat the procedure above; what happens if $Y=X ?$ what happens if X and Y are independent?
8. Consider the marginal densities $p(x)$ and $p(y)$ and X and Y. Create a random number generator for X and Y.
