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Abstract The multiple try Metropolis (MTM) method is a generalization of the clas-
sical Metropolis–Hastings algorithm in which the next state of the chain is chosen
among a set of samples, according to normalized weights. In the literature, several
extensions have been proposed. In this work, we show and remark upon the flexi-
bility of the design of MTM-type methods, fulfilling the detailed balance condition.
We discuss several possibilities, show different numerical simulations and discuss the
implications of the results.
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1 Introduction

Monte Carlo methods are very useful tools for scientific and approximate computing,
numerical inference and optimization (Devroye 1986; Robert and Casella 2004). For
instance, Monte Carlo methods are often necessary for the implementation of optimal
Bayesian estimators for which several families of techniques have been proposed
(Fitzgerald 2001; Gilks et al. 1995). The core of the Monte Carlo approach consists
of drawing random samples from a target probability density function (pdf).

A very powerful class of Monte Carlo techniques is the so-called Markov Chain
Monte Carlo (MCMC) algorithms (Gamerman and Lopes 2006; Gilks et al. 1995;
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Liang et al. 2010; Liu 2004; Robert and Casella 2004). They generate a Markov
chain such that its stationary distribution coincides with the target probability density
function (pdf). Typically, the only requirement is to be able to evaluate the target
function, where knowledge of the normalizing constant is usually not needed.

The most popular MCMC method is undoubtedly the Metropolis–Hasting (MH)
algorithm (Hastings 1970; Metropolis et al. 1953). It can be applied to almost any
arbitrary target distribution. However, to speed up the convergence and reduce the
“burn-in” period, several extensions have been proposed in literature. For instance, the
multiple try Metropolis (MTM) scheme (Liu et al. 2000) where, according to certain
weights, the next state of the Markov chain is selected from a set of independent
samples drawn from a generic proposal density. The main advantage of MTM is
that it can explore a larger portion of the sample space without a drop in acceptance
rate. Previously, a similar methodology was proposed in the domain of molecular
simulation, called “orientational bias Monte Carlo” (Frenkel and Smit 1996, Chapter
13), where i.i.d. candidates are drawn from a symmetric proposal pdf and one of these
is chosen according to normalized weights directly proportional to the target pdf.

Due to its good performance and the attractive possibility to combine it with adaptive
MCMC strategies (Liang et al. 2010, Chapter 8; Haario et al. 2001) (for instance using
different interacting or adaptive proposals at the same iteration Casarin et al. 2013),
the basic formulation of the MTM has been modified and stressed in different ways.
In (Pandolfi et al. 2010) the transition rule of the MTM algorithm is generalized such
that the analytic form of the weights is not specified. They also study the extension of
the MTM in the reversible jump framework. In (Casarin et al. 2013) a MTM scheme
with different proposal is introduced. Different approaches with correlated candidates
have been suggested in Craiu and Lemieux (2007), Martino et al. (2012a), Qin and Liu
(2001). Some interesting theoretical results on the asymptotic behavior of different
MTM strategies and some considerations on the choice of the weights are given in
(Bédard et al. 2012).

In all the proposed MTM schemes the number of generated candidates is fixed in
each iteration differently from, for instance, the delayed rejection Metropolis algorithm
(Mira 2001; Tierney and Mira 1999) that generates sequentially different candidates
until accepting one (or it is reached a maximum number of attempts). Furthermore,
the state space is not augmented defining an extended target distribution, as in other
MCMC methods based on auxiliary random variables (Storvik 2011).

In this work, we stress and remark upon the flexibility in the choice of transition
rules within MTM algorithms. First of all, we mix the approaches from Casarin et
al. (2013) and Pandolfi et al. (2010), building a MTM with generic weights using
different proposal pdfs. Then, we present a general framework for the construction of
acceptance probabilities in MTM schemes. We show this theoretically and illustrate
with specific examples. Owing to this flexibility, it is also possible to design a MTM
scheme without drawing reference points (Robert 2012). We also introduce this kind of
MTM algorithm with a determinist reference points, and then discuss how this change
affects its performance. Moreover, we show that all the presented schemes fulfill the
detailed balance condition and provide numerical comparisons. Related considerations
can be found in Barker (1965), Brooks (1998), Hastings (1970), Peskun (1973), Storvik
(2011), Tierney (1994), Zhang and Zhang (2012).
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The rest of the paper is organized as follows. In Sect. 2 we combine the schemes in
(Casarin et al. 2013; Pandolfi et al. 2010) describing a MTM algorithm using different
proposal densities and generic weight functions. In Sect. 3, we explain the flexibility
in the choice of the acceptance functions, satisfying the detailed balance condition.
Some examples of acceptance rules are shown in Sect. 4. Section 5 introduces a MTM
method without generating the reference points randomly. Numerical comparisons are
given in Sect. 6 and finally we draw conclusions in Sect. 7.

2 MTM algorithm with generic weights and different proposals

In the classical MH algorithm, a new possible state is drawn from the proposal pdf
and the movement is accepted with a decision rule that guarantees fulfillment of the
balance condition. In a multiple try approach, several (independent Liu et al. 2000;
Pandolfi et al. 2010 or correlated Martino et al. 2012a; Qin and Liu 2001) samples are
generated and from these a “good” one is chosen.

In (Casarin et al. 2013) the standard MTM is generalized using different proposal
densities whereas in (Pandolfi et al. 2010) the authors extend the standard MTM
considering generic weight functions. In the following section, we recall and mix
together both approaches (Casarin et al. 2013; Pandolfi et al. 2010) providing an
extended MTM algorithm drawing candidates from with different proposals where
the weight functions are not defined specifically, i.e., the analytic form can be chosen
arbitrarily (they must be bounded and positive functions).

2.1 Algorithm

Let po(x) be the pdf that we want to draw from and p(x) a function proportional to
our target pdf po(x) (i.e., p(x) ∝ po(x)). Given a current state of the chain xt = x ∈
D ⊆ R, t ∈ N, (we assume scalar values only for simplicity in the treatment), we
draw N independent samples each step from different proposal pdfs, i.e.,

y1 ∼ π1(·|x), y2 ∼ π2(·|x), . . . , yN ∼ πN (·|x).

Therefore, we can write the joint distribution of the generated samples as

qN (y1:N |x) = π1(y1|x)π2(y2|x) · · · πN (yN |x).

Then, a “good” candidate among the generated samples is chosen according to weight
functions ω(z1, z2) ∈ R

2 → R
+ (where z1 and z2 are generic variables) that have to

be (a) bounded and (b) positive. Given a current state xt = x , the algorithm can be
described as follows:

1. Draw N samples y1:N = [y1, y2, . . . , yN ] from the joint pdf

q(y1:N |x) = π1(y1|x)π2(y2|x)π2(y3|x) · · · πN (yN |x),

namely, draw y j from π j (·|x), with j = 1, . . . , N .
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2. Calculate the weights ω j (y j , x), j = 1, . . . , N , and normalize them to obtain
ω̄ j , j = 1, . . . , N .

3. Draw a y = yk ∈ {y1, . . . ., yN } according to ω̄ j , j = 1, . . . , N and set (recall
that yk = y)

Wy = ω̄k = ωk(y, x)
∑N

j=1 ω j (y j , x)
. (1)

4. Draw other auxiliary samples (often called reference points),

x∗
i ∼ πi (·|y)

for i = 1, . . . , k − 1, k + 1, . . . ., N , and set x∗
k = x .

5. Compute the corresponding weights ω j (x∗
j , y), j = 1, . . . , N and set (recall that

x∗
k = x)

Wx = ωk(x, y)
∑N

j=1 ω j (x∗
j , y)

. (2)

6. Let xt+1 = y (recall that y = yk) with probability

α(x, y) = min

[

1,
p(y)πk(x |y)

p(x)πk(y|x)

Wx

Wy

]

, (3)

otherwise set xt+1 = x with the remaining probability 1 − α(x, y).
7. Set t = t + 1 and go back to the step 1.

The kernel of the algorithm above satisfies the detailed balance condition. The proof is
a special case of the development that we will present in Sect. 3.2, using the probability
α(x, y) in Eq. (3).

2.2 Special case: standard MTM algorithm

Choosing the weight functions with the specific analytic form

ωi (yi , x) = p(yi )πi (x |yi )λi (x, yi ), (4)

with λi (x, yi ) = λi (yi , x), i = 1, . . . , N , we obtain the MTM scheme proposed
in Casarin et al. (2013) (with different proposals). Indeed, note that the acceptance
function (3) can be also expressed as

α(x, y) = min

[

1,
p(y)πk(x |y)

p(x)πk(y|x)

ωk(x, y)

ωk(y, x)

∑N
j=1 ω j (y j , x)

∑N
j=1 ω j (x∗

j , y)

]

,
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Fig. 1 Sketch of the MTM
algorithm with generic weights
and different proposals
described in Sect. 2.1

and using the weight choice in Eq. (4),

α(x, y) = min

[

1,
p(y)πk(x |y)

p(x)πk(y|x)

p(x)πk(y|x)λk(x, y)

p(y)πk(x |y)λk(y, x)

∑N
j=1 ω j (y j , x)

∑N
j=1 ω j (x∗

j , y)

]

,

then it is simplified

α(x, y) = min

[

1,

∑N
j=1 ω j (y j , x)

∑N
j=1 ω j (x∗

j , y)

]

.

Finally, observe that if we use just one proposal, π1(y|x) = π2(y|x) = · · · = πN (y|x)

and the same functions λ1(x, y) = λ2(x, y) = · · · = λN (x, y), we obtain the standard
formulation of the MTM (Liu et al. 2000). Figure 1 represents a general scheme of
the algorithm described in Sect. 2.1.

2.3 Important observations

It is important to remark that, in order to obtain a fair comparison among the gen-
erated candidates, in the computation of the weights, it is advisable to use proposal
functions with the same area below, i.e.,

∫
D π1(y1|x)dy1 = ∫D π2(y2|x)dy2 = · · · =∫

D πN (yN |x)dyN , for instance they can be normalized. This is not strictly needed but
recommendable.
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Moreover, it is possible to show (see Sect. 3.2) that the algorithm above works
owing to α(x, y) satisfies the following equation

p(x)πk(y|x)Wyα(x, y) = p(y)πk(x |y)Wxα(y, x). (5)

Note that 0 ≤ Wy ≤ 1 and 0 ≤ Wx ≤ 1 are probabilities and functions of
x, y, the remaining points yi and x∗

i , then a more appropriate notation would be
Wy(y1, . . . , yk = y, . . . , yN , x) and Wx (x∗

1 , . . . x∗
k = x, . . . , x∗

N , y).1 However, for
simplicity we maintain the notation Wy and Wx . In the sequel, we suggest different
acceptance functions α(x, y).

3 Flexibility of the acceptance function

Here, we introduce different multiple try MH approaches with generic weights func-
tions. Specifically we show how to design different suitable acceptance functions
α(x, y) fulfilling the detailed balance condition. Indeed, it is possible to choose func-
tions α(x, y) with the form

α(x, y) = β(x, y)γ (x, y|x∗−k, y−k),

where

1. β(x, y) is such that

p(x)πk(y|x)β(x, y) = p(y)πk(x |y)β(y, x), ∀k ∈ {1, . . . , N }, (6)

2. γ (x, y|x∗−k, y−k) satisfies

Wyγ (x, y|x∗−k, y−k) = Wxγ (y, x |y−k, x∗−k), (7)

where x∗−k = [x∗
1 ,. . . x∗

k−1, x∗
k+1, . . . , x∗

N ] and y−k =[y1, . . . yk−1, yk+1, . . . , yN ].
3. Finally we need

0 ≤ α(x, y) ≤ 1. (8)

If the Eqs. (6) and (7) are jointly fulfilled then the condition (5) also holds, i.e., the
equation

p(x)πk(y|x)Wyα(x, y) = p(y)πk(x |y)Wxα(y, x)

is satisfied. Equation (8) can be easily obtained choosing separately 0 ≤ β(x, y) ≤ 1
and 0 ≤ γ (x, y|x∗−k, y−k) ≤ 1. Moreover, in this case, Eq. (6) is exactly the balance
condition of the standard MH algorithm, then we can choose any acceptance functions

1 Recall that yi are drawn from πi (·|x) whereas x∗
i are drawn from πi (·|y), i = 1, . . . , k − 1, k + 1, . . . N

and x∗
k = xt = x .
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suitable for the standard MH algorithm as function β(x, y). Similar considerations can
be used to design suitable functions γ (x, y|x∗−k, y−k). Some examples are provided
in Sect. 4.

3.1 Algorithm

The novel scheme can be summarized as follows:

1. Draw N samples from the proposal pdfs y j ∼ π j (·|x), with j = 1, . . . , N .
2. Calculate the weights ω j (y j , x), j = 1, . . . , N , and normalize them to obtain

ω̄ j , j = 1, . . . , N .
3. Draw a y = yk ∈ {y1, . . . ., yN } according to ω̄ j , j = 1, . . . , N and set (recall

that yk = y)

Wy = ω̄k = ωk(y, x)
∑N

j=1 ω j (y j , x)
.

4. Draw other auxiliary samples x∗
i ∼ πi (·|y) for i = 1, . . . , k − 1, k + 1, . . . , N ,

and set x∗
k = x .

5. Compute the corresponding weights ω j (x∗
j , y), j = 1, . . . , N and set (recall that

x∗
k = x)

Wx = ωk(x, y)
∑N

j=1 ω j (x∗
j , y)

.

6. Let xt+1 = y (recall that y = yk) with probability

α(x, y) = β(x, y)γ (x, y|x∗−k , y−k),

where

p(x)πk(y|x)β(x, y) = p(y)πk(x |y)β(y, x)

and

Wyγ (x, y|x∗−k, y−k) = Wxγ (y, x |y−k, x∗−k).

Otherwise set xt+1 = x with the remaining probability 1 − α(x, y).
7. Set t = t + 1 and go back to the step 1.

3.2 Balance condition

To guarantee that a Markov chain generated by an MCMC method converges to the
target distribution po(x) ∝ p(x), we can prove that the kernel A(y|x) of the corre-
sponding algorithm (probability of accepting a generated sample y given the previous
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state value x) fulfills the following detailed balance condition2 (Liu 2004; Robert and
Casella 2004)

p(x)A(y|x) = p(y)A(x |y).

First of all, we need to write down the kernel A(y|x). We consider x 
= y, since the case
x = y is trivial (indeed, in this case A(y|x) is proportional to a delta function δ(y − x)

(Liu 2004; Robert and Casella 2004)). The kernel (for x 
= y) can be expressed as

A(y = yk |x) =
N∑

i=1

h(y = yk |x, k = i),

where h(y = yk |x, k = i) is the probability of accepting the new state xt+1 = yk

given the previous one xt = x , when the chosen sample yk is the i th candidate,
i.e., when yk = yi . However, since the yi are exchangeable, for symmetry we have
h(y = yk |x, i) = h(y = yk |x, j)∀i, j ∈ {1, . . . , N }. Hence, we can also write

A(y = yk |x) = N · h(y = yk |x, k),

where k ∈ {1, . . . , N } and we recall N is the total number of proposed candidates yi .
Then, we need to show that

p(x)h(y|x, k) = p(y)h(x |y, k),

for a generic k ∈ {1, . . . , N }. Following each step of the algorithm above, we can
write

p(x)h(y = yk |x, k)

= p(x)

∫

D
· · ·
∫

D

⎡

⎣
N∏

j=1

π j (y j |x)

⎤

⎦ ωk(y, x)
∑N

i=1 ωi (yi , x)

⎡

⎣
N∏

j=1; j 
=k

π j (x∗
j |y)

⎤

⎦ ·

×β(x, y)γ (x, y|x∗−k , y−k)
︸ ︷︷ ︸

α(x,y)

dy1:k−1dyk+1:N dx∗
1:k−1dx∗

k+1:N .

Note that each factor inside the integral corresponds to a step of the method described
in the previous section. The integral is over all auxiliary variables. Since we consider
y = yk and recalling the definition of Wy in Eq. (1), we can rewrite the expression in
this way

2 Note that the balance condition is a sufficient but not necessary condition. Namely, the detailed balance
ensures invariance. The converse is not true. Markov chains that satisfy the detailed balance condition are
called reversible.
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p(x)h(y|x, k)

= p(x)

∫

D
· · ·
∫

D
πk(y|x)

⎡

⎣
N∏

j=1, j 
=k

π j (y j |x)

⎤

⎦Wy

⎡

⎣
N∏

j=1; j 
=k

π j (x∗
j |y)

⎤

⎦

×β(x, y)γ (x, y|x∗−k , y−k) dy1:k−1dyk+1:N dx∗
1:k−1dx∗

k+1:N .

and we only arrange it, obtaining

p(x)h(y|x, k)

=
∫

D
· · ·
∫

D

⎡

⎣
N∏

j=1, j 
=k

π j (y j |x)

⎤

⎦

⎡

⎣
N∏

j=1; j 
=k

π j (x∗
j |y)

⎤

⎦

×p(x)πk(y|x)β(x, y) × Wyγ (x, y|x∗−k, y−k) dy−kdx∗−k . (9)

Therefore, since we assume (see Eqs. 6 and 7)

p(x)πk(y|x)β(x, y) = p(y)πk(x |y)β(y, x),

and

Wyγ (x, y|x∗−k, y−k) = Wxγ (y, x |y−k, x∗−k),

it is straightforward that the expression in Eq. (9) is symmetric in x and y. Indeed, we
can exchange the notations of x and y, and x∗

i and y j , respectively, and the expression
does not vary. Then we can write

p(x)h(y|x, k) = p(y)h(x |y, k).

Since we have assumed a generic k and A(y = yk |x) = h(y = yk |x, k), it possible to
assert that

p(x)A(y|x) = p(y)A(x |y),

that is the balance condition. Therefore, the Markov chain generated by the algorithm,
described in the previous section, converges to our target pdf.

4 Examples of functions α(x, y)

In this section, we provide some suitable acceptance functions α(x, y) = D × D →
[0, 1], that satisfies the condition (5). The easiest way is to obtain α(x, y) is to design
separately suitable functions 0 ≤ β(x, y) ≤ 1 and 0 ≤ γ (x, y|x∗−k, y−k) ≤ 1.
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Table 1 Example of suitable functions β(x, y)

Functions β(x, y) References

β1(x, y) = min
[
1,

p(y)πk (x |y)
p(x)πk (y|x)

]
Hastings (1970), Metropolis et al. (1953)

β2(x, y) = p(y)πk (x |y)
p(x)πk (y|x)+p(y)πk (x |y)

Barker (1965)

β3(x, y) = λ(x,y)

1+ p(x)πk (y|x)

p(y)πk (x |y)

Hastings (1970)

β4(x, y) = p(y)πk (x |y)
λ(x,y)

Liu (2004), Robert and Casella (2004)

β5(x, y) = λ(x,y)
p(x)πk (y|x)

Liu (2004), Robert and Casella (2004)

β6(x, y) = p(y)λ(x,y)
πk (y|x)

Liu (2004, Chapter 5)

β7(x, y) = πk (x |y)λ(x,y)
p(x)

Liu (2004, Chapter 5)

4.1 Possible choices of β(x, y)

To design a function β(x, y) such that 0 ≤ β(x, y) ≤ 1 and

p(x)πk(y|x)β(x, y) = p(y)πk(x |y)β(y, x),

we can choose any acceptance rule suitable for the standard MH algorithm (Barker
1965; Hastings 1970). Hence, for instance, we can choose the classical acceptance
rule of the MH algorithm, i.e.,

β1(x, y) = min

[

1,
p(y)πk(x |y)

p(x)πk(y|x)

]

. (10)

Other possibilities are summarized in Table 1 where λ(x, y) is a symmetric non-
negative function (i.e., λ(x, y) ≥ 0 and λ(x, y) = λ(y, x) for all (x, y) ∈ D × D)
such that 0 ≤ β(x, y) ≤ 1.

Moreover, defining

R(x, y) = p(y)πk(x |y)

p(x)πk(y|x)
,

and considering a function F(ϑ) : R
+ → [0, 1] such that

F(ϑ) = ϑ F(1/ϑ),

then it is possible to define a general acceptance function (Gamerman and Lopes 2006;
Gilks et al. 1995)

βg(x, y) = (F ◦ R)(x, y) = F(R(x, y)).
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For instance, if F(ϑ) = min[1, ϑ] we obtain Eq. (10) and if F(ϑ) = ϑ
1+ϑ

we find
β2 or β3 with λ(x, y) = 1 (see Table 1). In Peskun (1973) there is a comparison of
different acceptance functions in a standard MH algorithm.

4.2 Possible choices of γ (x, y|x∗−k, y−k)

In this section, we provide some examples of suitable function γ (x, y|x∗−k, y−k). We
need functions γ (x, y|x∗−k, y−k) such that

Wyγ (x, y|x∗−k, y−k) = Wxγ (y, x |y−k, x∗−k), (11)

where

Wy = ωk(y, x)
∑N

j=1 ω j (y j , x)
, and Wx = ωk(x, y)

∑N
j=1 ω j (x∗

j , y)
.

Therefore, for instance, it is possible to choose

γ1(x, y|x∗−k, y−k) = Wx .

Indeed, in this case γ (y, x |y−k, x∗−k) = Wy and the condition (11) is satisfied
(Wy Wx = Wx Wy). Another possibility is to define

γ2(x, y|x∗−k, y−k) = Wx

Wx + Wy
,

or

γ3(x, y|x∗−k, y−k) = min

[

1,
Wx

Wy

]

.

5 MTM without drawing reference points

The previous considerations also suggest how it is possible to design a MTM that
avoids sampling the reference points x∗−k . For some authors generating the reference
samples is considered a drawback of the MTM schemes, since N − 1 samples are
only drawn to fulfill the balance condition (Robert 2012). To avoid this step, the MTM
method in Sect. 2.1 can be modified as follows:

1. Given a current state xt = x , draw N samples y1:N = [y1, y2, . . . , yN ] from the
joint pdf

q(y1:N |x) = π1(y1|x)π2(y2|x)π2(y3|x) · · · πN (yN |x),

namely, draw y j from π j (·|x), with j = 1, . . . , N .
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2. Calculate the weights ω j (y j , x), j = 1, . . . , N , and normalize them to obtain
ω̄ j , j = 1, . . . , N .

3. Draw a y = yk ∈ {y1, . . . ., yN } according to ω̄ j , j = 1, . . . , N and set

Wy = ω̄k = ωk(y, x)
∑N

j=1 ω j (y j , x)
. (12)

4. Set x∗
i = yi for i = 1, . . . , k − 1, k + 1, . . . ., N , and set x∗

k = x .
5. Compute the corresponding weights ω j (x∗

j , y), j = 1, . . . , N and (recalling
xk∗ = x) set

Wx = ωk(x, y)
∑N

j=1 ω j (x∗
j , y)

. (13)

6. Let xt+1 = y (recall that y = yk) with probability

α(x, y) = min

[

1,
p(y)

∏N
i=1 πi (x∗

i |y)

p(x)
∏N

i=1 πi (yi |x)

Wx

Wy

]

, (14)

otherwise set xt+1 = x with the remaining probability 1 − α(x, y).
7. Set t = t + 1 and go back to the step 1.

The differences w.r.t. the standard MTM method are contained in the steps 4 and 6.
In this case the vectors y = [y1, . . . , yk = y, . . . ., yN ] and x∗ = [x∗

1 = y1, . . . , x∗
k =

x, . . . ., x∗
N = yN ] differ only in the position k, i.e., y−k = x∗−k . Hence, note that

α(x, y) can be expressed as

α(x, y) = min

[

1,
p(y)πk(x |y)

p(x)πk(y|x)

∏N
i 
=k πi (yi |y)

∏N
i 
=k πi (yi |x)

Wx

Wy

]

. (15)

However, although this scheme satisfies the balance condition as we show below,
observing the expression of α, a drawback could seem evident: since the sam-
ples y1:N are drawn from πi (·|x), i = 1, . . . , N , the product

∏N
i 
=k πi (yi |x) would

be “often” greater then
∏N

i 
=k πi (yi |y). That is to say, x is more “likely” than
y given the “observations” yi , i 
= k. Therefore, α(x, y) would be “often” less
than 1 so that accepting a jump becomes “rare.”3 This issue would increase with
N → +∞. However, the numerical simulations (see Sect. 6) show that the prob-
ability α(x, y) first surprisingly increases for small values of N (owing to the fac-
tor Wx

Wy
) and then decreases with N → +∞ as expected. Moreover the perfor-

mance generally gets worse with N → +∞. Hence this scheme appears, in gen-
eral, useless. These considerations above explain as, in the standard MTM version

3 However, it is important to remark that high acceptance rates are not a suitable indicator of good perfor-
mance since, in general, the best acceptance rate is different from 1 (Roberts et al. 1997).
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(Liu et al. 2000), the authors introduce the idea of randomly generating the refer-
ence points x∗

i . However, there is an important special case that we show in Sect.
5.2.

5.1 Balance condition

Again we must check that the detailed balance condition p(x)A(y|x) = p(y)A(x |y)

is fulfilled. The kernel A(y|x) (for x 
= y) can be expressed, also in this case, as
A(y = yk |x) = N · h(y = yk |x, k), where k ∈ {1, . . . , N } and N is the total number
of proposed candidates yi . Then, finally we have to show that

p(x)h(y|x, k) = p(y)h(x |y, k),

for a generic k ∈ {1, . . . , N }. Following each step of the MTM algorithm without
reference point, we can write

p(x)h(y|x, k) = p(x)

∫

D
· · ·
∫

D

[
N∏

i=1

πi (yi |x)

]

Wy

min

[

1,
p(y)

∏N
i=1 πi (x∗

i |y)

p(x)
∏N

i=1 πi (yi |x)

Wx

Wy

]

dy1:k−1dyk+1:N dx∗
1:k−1dx∗

k+1:N .

The integral is over all auxiliary variables. Just by rearranging, we obtain

p(x)h(y|x, k) =
∫

D
· · ·
∫

D

min

[

p(x)

N∏

i=1

πi (yi |x)Wy, p(y)

N∏

i=1

πi (x∗
i |y)Wx

]

dy1:k−1dyk+1:N dx∗
1:k−1dx∗

k+1:N . (16)

Recalling that x∗
j = y j for j = 1, . . . , k − 1, k + 1, . . . , N , x∗

k = x and yk = y, the
Eq. (16) can be rewritten as

p(x)h(y|x, k) =
∫

D
· · ·
∫

D

min

⎡

⎣p(x)πk(y|x)

N∏

i 
=k

πi (yi |x)Wy, p(y)πk(x |y)

N∏

i 
=k

πi (yi |y)Wx

⎤

⎦

dy1:k−1dyk+1:N .
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Fig. 2 Scheme of MTM
algorithm with generic weights
and different independent
proposal pdfs

Therefore it is straightforward to see that we can exchange x and y without varying
the expression above (see also Eq. 12 and 13), then p(x)h(y|x, k) = p(y)h(x |y, k)

and the balance condition p(x)A(y|x) = p(y)A(x |y) is satisfied.

5.2 Independent proposal pdfs

If the proposal pdfs are chosen as independent densities, i.e., π1(y1|x) = π1(y1), π2
(y2|x) = π2(y2)…πN (yN |x) = πN (yN ), the algorithm is simplified. Indeed, the
α(x, y) probability in Eq. (15), i.e.,

α(x, y) = min

[

1,
p(y)πk(x |y)

p(x)πk(y|x)

∏N
i 
=k πi (yi |y)

∏N
i 
=k πi (yi |x)

Wx

Wy

]

,

now it can be rewritten as

α(x, y) = min

[

1,
p(y)πk(x)

∏N
i 
=k πi (yi )

p(x)πk(y)
∏N

i 
=k πi (yi )

Wx

Wy

]

= min

[

1,
p(y)πk(x)

p(x)πk(y)

Wx

Wy

]

.

Observe that it is exactly the probability α(x, y) obtained in Eq. (3) using independent
proposals. Therefore, here, the conclusion is different from the general case: it is not
necessary to draw reference points when independent proposal densities are used. It
is necessary just to set deterministically x∗

i = yi for i = 1, . . . , k − 1, k + 1, . . . ., N ,
and set x∗

k = x . This special case, when the weights are chosen as in Sect. 2.2, is also
discussed in Liu (2004, Chapter 5).

Figure 2 depicts the scheme of a MTM with generic weights and different indepen-
dent proposal pdfs, whereas Fig. 3 shows virtually the simplest MTM algorithms, using
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(a) (b)

Fig. 3 Sketch of the simplest MTM schemes using just one independent proposal density, a with importance
weights and b weights proportional to p(x)

the same independent proposal to draw the N candidates and importance weights (Fig.
3a) or weights proportional to the target (Fig. 3b).4 In this special cases, the analysis
of the algorithm is also simpler. Indeed, for instance, consider the case in Fig. 3a. The
acceptance probability can be expressed as

α(x, y) = min

[

1,
ω(y) +∑N

i 
=k ω(yi )

ω(x) +∑N
i 
=k ω(yi )

]

,

where w(yi ) = p(yi )
π(yi )

. Note that, in this case clearly α(x, y) → 1 as N → ∞, since
the chosen candidate is “extremely good” using the importance sampling principle,
when N → ∞.

6 Numerical simulations

In this section, we provide numerical results comparing different MTM approaches:
using random walks or independent proposal pdfs, with different weight functions,
without drawing the reference points and using different acceptance functions. All the
results have been averaged over 2,000 runs and they are obtained generating 5,000
iterations of the Markov chain, with the exception of the last example where we only
draw 500 samples.

4 Another simple MTM scheme is the “orientational bias Monte Carlo” (Frenkel and Smit 1996, Chapter
13). In this case, the proposal pdf must be symmetric, i.e., π(y|x) = π(x |y), and the weights must be
proportional to the target, i.e., ω(yi ) = p(yi ), i = 1, . . . , N .
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Table 2 Numerical results (proposal as random walk, σ = 2, using importance weights)

Technique Number of tries Acceptance rate Linear
correlation

standard MH
(MTM with
N = 1)

N = 1 0.3002 0.9053

MTM-rw N = 2 0.4363 0.8397

MTM-rw N = 5 0.6046 0.6989

MTM-rw N = 100 0.8647 0.1892

MTM-rw N = 1,000 0.9557 0.0513

MTM-without N = 2 0.4229 0.9160

MTM-without N = 5 0.5121 0.9568

MTM-without N = 100 0.1902 0.9978

MTM-without N = 1,000 0.0036 0.9993

6.1 Random walk proposal densities

Let X ∈ R be a random variable5 with bimodal pdf

po(x) ∝ p(x) = exp
{
−(x2 − 4)2/4

}
= exp

{

− x4 − 8x2 + 16

4

}

. (17)

We want to draw samples from po(x) using different MTM schemes. We generate tries
from a Gaussian proposal with variance σ 2 and the mean depends on the previous state
x of the chain, i.e.,

π(y|x) ∝ exp

{

− (y − x)2

2σ 2

}

. (18)

We apply MTM methods using the proposal above, different number of candidates
N = 1, 2, 5, 100, 1,000 and different standard deviation σ = 2, 10. Importance
weights ω(yi , x) = p(yi )

π(yi |x)
are used to select a good candidate. Observe that a MTM

with N = 1 is exactly a standard MH algorithm. We also apply different MTM tech-
niques without drawing the reference points (denoted as “MTM-without”) described
in Sect. 5. Tables 2 and 3 summarize the numerical results in terms of averaged prob-
ability of accepting a movement and linear correlation between the state xt and xt+1.

It is important to remark that high acceptance rates are not a suitable indicator of
good performance since, in general, the best acceptance rate is different from 1 (Roberts
et al. 1997). Therefore, better performance is indicated by smaller correlations. We
show also the acceptance rates because of the MTM method (drawing the reference

5 Note that, in this work, we have mainly considered scalar variables in order to simplify the treatment
and the notation. All the considerations and algorithms contained in this work are also valid for multi-
dimensional variables (see, for instance, the last numerical example in Sect. 6.6).
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Table 3 Numerical results (proposal as random walk, σ = 10, using importance weights)

Technique Number of tries Acceptance rate Linear
correlation

standard MH
(MTM with
N = 1)

N = 1 0.0991 0.9085

MTM-rw N = 2 0.1795 0.8335

MTM-rw N = 5 0.3483 0.6700

MTM-rw N = 100 0.8373 0.1676

MTM-rw N = 1,000 0.9483 0.0522

MTM-without N = 2 0.1810 0.8376

MTM-without N = 5 0.3575 0.7017

MTM-without N = 100 0.4453 0.9264

MTM-without N = 1,000 0.2612 0.9952

points) presents a behavior typical in adaptive MCMC algorithms where the adaptive
proposal pdf convergence to the true shape of the target (Martino et al. 2012b): the
acceptance rate grows and the linear correlation decreases quickly as N → +∞.
Indeed, we can observe that, in both cases σ = 2, 10, the correlation obtained with
the MTM decreases to zero as N → +∞. Without drawing the reference points, the
resulting algorithm is totally useless for σ = 2 (Table 2) whereas it outperforms the
standard MH for N = 2 and N = 5 for σ = 10 (Table 3). However, increasing N
the performance gets worse. The results in Table 3 suggest that it exists an optimal
number of tries for a MTM scheme without generating randomly the reference points.
However, the MTM method with the additional cost of the random generation of
reference points always outperforms the general scheme described in Sect. 5. With
independent proposal pdfs this is not true as we show later.

6.2 Different choice of the weights

Considering the same target pdf in Eq. (17), the Gaussian proposal with σ = 10 in
Eq. (18) (random walk) and using N = 100 tries, we have compared the performance
of different weight functions. Table 4 summarizes the results.

The best results are provided by the importance weights ωi (yi , x) = p(yi )
πi (yi |x)

. The
weights of the form ωi (yi , x) = p(yi ) and ωi (yi , x) = p(yi )πi (x |yi ) also yield small
correlation. Clearly, the choice ωi (yi , x) = 1 produces the same results of a standard
MH since the selected candidate is chosen uniformly among the set of drawn tries
yi , i = 1, . . . , N , without using any information of the target or the proposal functions.

6.3 Independent proposal densities

In order to draw samples from the target in Eq. (17), we also apply MTM algorithms
with independent proposal densities (MTM-ind) as
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Table 4 Numerical results
(proposal as random walk,
σ = 10, N = 100 tries)

Weights Acceptance rate Linear correlation

ωi (yi , x) = p(yi )
πi (yi |x)

importance weights
0.8373 0.1676

ωi (yi , x) = p(yi ) 0.8374 0.1959

ωi (yi , x) = 1 0.0988 0.9090

ωi (yi , x) = √p(yi ) 0.7036 0.3340

ωi (yi , x) = [p(yi )]2 0.6870 0.3093

ωi (yi , x) = [p(yi )]3 0.4476 0.4020

ωi (yi , x) = πi (x |yi ) 0.1348 0.8809

ωi (yi , x) = 1
πi (yi |x)

0.0365 0.9652

ωi (yi , x) = p(yi )πi (x |yi ) 0.8371 0.2248

Table 5 Numerical results
(σ = 10, N = 100 tries)

Proposal pdfs Acceptance
rate

Linear
correlation

MTM-rw with
ωi (yi , x) = p(yi )

πi (yi |x)

0.8373 0.1676

MTM-rw with
ωi (yi , x) = p(yi )

0.8374 0.1959

MTM-ind with one proposal pdf

(μ = 0) and ωi (yi , x) = p(yi )
πi (yi |x)

0.9760 0.0252

MTM-ind with one proposal pdf
(μ = 0) and ωi (yi , x) = p(yi )

0.9751 0.0267

MTM-ind with two proposal pdfs
(μ1 = −10 and μ2 = 2) and

ωi (yi , x) = p(yi )
πi (yi |x)

0.7420 0.2748

MTM-ind with two proposal pdfs
(μ1 = −10 and μ2 = 2) and
ωi (yi , x) = p(yi )

0.7509 0.6622

π(y) ∝ exp

{

− (y − μ)2

2σ 2

}

,

with σ = 10. In a first scheme, we generate N = 100 candidates from one proposal
with μ = 0. Moreover, in other scheme, we use two different independent proposal
pdfs with μ1 = −10 and μ2 = 2. In this case, we draw N/2 = 50 tries from each
one. We apply these schemes with importance weights, ωi (yi , x) = p(yi )

πi (yi )
, and also

with weights just proportional to the target pdf, ωi (yi , x) = p(yi ). Table 5 shows the
numerical results.

The first two lines of the Table 5 recall the acceptance rates and the linear
correlations using the random walk proposal densities. The table shows that the
MTM with independent proposal with μ = 0 provides the best results, i.e., the
smallest correlation. However, the results depend strongly on a suitable tuning
of the parameter μ. Also in this case, the importance weights seem to provide
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Table 6 Estimation of the constant 1
cp

=
√

2
2π

= 0.5642 and standard deviation of the estimation

(N = 1000 tries)

Technique Estimation of 1
cp

Std of the
estimation

Further informations

MTM-ind 0.6056 0.0012 μ = 10, σ = 50

MTM-ind 0.5994 0.0010 μ = 100, σ = 50

MTM-rw 0.5819 0.0050 σ = 50

better results. Another important consideration is that, using two proposal pdfs,
the MTM has selected a candidate generated from the proposal with μ1 = −10
with a rate of 39.5 % using importance weights, and just 1.5 % with the weights
proportional to the target. This observation can be extremely important to design
an adaptive strategy where the best proposal density is chosen among of a set of
proposals.

6.4 Heavy tails

In order to analyze the performance of the MTM schemes with heavy tails, now we
consider as target pdf the so-called Lévy distribution for non-negative random variable,
namely,

po(x) ∝ p(x) = 1

(x − η)3/2 exp

(

− ν

2(x − η)

)

, ∀x ≥ η ≥ 0. (19)

The normalizing constant 1
cp

, such that po(x) = 1
cp

p(x), is analytically known, 1
cp

=
√

ν
2π

.

Moreover, given a random variable X ∼ po(x), all the moments E[Xγ ] with γ ≥ 1
do not exist owing to the heavy tail characteristic of the Lévy distribution.

Our goal is to estimate the normalizing constant 1
cp

via Monte Carlo simulation,
when η = 0 and ν = 2, generating 5,000 iterations of the Markov chain. We apply
three different MTM techniques with N = 1,000 tries (drawing the reference points)
and using importance weights to choose a suitable candidate each step. In the first
two schemes (MTM-ind), we use an independent proposal π(xt ) ∝ exp{−(xt −
μ)2/(2σ 2)} with μ = 10, 100 and σ = 50, whereas, in the last one (MTM-rw), we
use a random walk proposal π(xt |xt−1) ∝ exp{−(xt − xt−1)

2/(2σ 2)} with σ = 50.
We choose huge values of σ due to the heavy tail feature of the target. We have averaged
all the results over 2,000 runs and they are summarized in Table 6. The real value of
1

cp
when ν = 2 is

√
2

2π
= 0.5642.6

6 We do not provide the estimated linear correlation because of the moments (as the mean, for instance) of
the target do not exist, and it makes difficult a right estimation of the correlation.
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Table 7 Numerical results with
N = 10

Function α Acceptance rate Linear correlation

α1,1(x, y) 0.1167 0.9932

α1,2(x, y) 0.3246 0.9811

α1,3(x, y) 0.5512 0.9756

α2,3(x, y) 0.3370 0.9806

Table 8 Numerical results with
N = 100

Function α Acceptance rate Linear correlation

α1,1(x, y) 0.0173 0.9931

α1,2(x, y) 0.3354 0.9828

α1,3(x, y) 0.5904 0.9737

α2,3(x, y) 0.3540 0.9859

6.5 Different acceptance probabilities

In this section, we consider again the bimodal target density in Eq. (17), i.e.,
po(x) ∝ p(x) = exp

{−(x2 − 4)2/4
}
, and we generate candidates from a random

walk Gaussian density with σ = 1, i.e., π(y|x) ∝ exp
{
− (y−x)2

2

}
. We choose as

weight functions ω(x, y) = [p(x)]θ , with θ = 1/2. Note that they cannot be obtained
using the analytic form necessary in the standard MTM (Liu et al. 2000). Moreover,
we consider four possible combinations of the β(x, y) and γ (x, y) functions

α1,1(x, y) = β1(x, y)γ1(x, y),

α1,2(x, y) = β1(x, y)γ2(x, y),

α1,3(x, y) = β1(x, y)γ3(x, y),

α2,3(x, y) = β2(x, y)γ3(x, y),

where each βi (x, y), i = 1, 2, and γ j (x, y), j = 1, 2, 3, are defined in Sects. 4.1
and 4.2. Then, we run the different MTM algorithms with N = 10 and N = 100
candidates. Table 7 shows the acceptance rate (the averaged probability of accepting
a movement) and normalized linear correlation coefficient (between one state of the
chain and the next) averaged over 2,000 runs and obtained with the different techniques
where N = 10.

Table 8 illustrates the results using N = 100. We observe that α1,3 provides that
greatest acceptance rate and lowest correlation in both cases. The acceptance rate of
α1,1 decreases with N = 100 because of γ1(x, y|x∗−k, y−k) = Wx diminishes with
the number of tries N . Moreover, the correlation appears (almost) invariant with the
number of tries N .

Better performances can be attained using the acceptance function of (Pandolfi et al.
2010) and rewritten in Eq. (3), as expected analyzing the analytic form of the different
acceptance functions. Indeed, we obtain acceptance rates of 0.74, 0.81 and correlation
0.96, 0.96 with N = 10 and N = 100, respectively.
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6.6 Smiling-face distribution

In this section, we show that the power of the MTM schemes increases when they draw
from more complicated target distributions in higher dimensions, w.r.t. a standard MH
algorithm. To provide a graphical example, we consider a bidimensional target pdf
po(x) (where x = [x (1), x (2)]T ∈ R

2, x (i) ∈ R, i = 1, 2) composed as a mixture of
4 densities,

po(x) ∝ 1

4

4∑

i=1

pi (x). (20)

The first three components are proportional to bivariate Gaussian pdfs, i.e.,

pi (x) = pi (x (1), x (2)) = exp

⎧
⎪⎨

⎪⎩
−
(

x (1) − μ
(1)
i

)2

2
(
σ

(1)
i

)2 −
(

x (2) − μ
(2)
i

)2

2
(
σ

(2)
i

)2

⎫
⎪⎬

⎪⎭
,

with i = 1, 2, 3, μ
(1)
1 = −7, μ

(2)
1 = 35, μ

(1)
2 = 7, μ

(2)
2 = 35, μ

(1)
3 = 0, μ

(2)
3 =

23, σ
(1)
1 = 2, σ

(2)
1 = 2, σ

(1)
2 = 2, σ

(2)
2 = 2, σ

(1)
3 = 1 and σ

(2)
3 = 4. The last

component is a banana-shaped density (Haario et al. 1999; Lan et al. 2012), i.e.,

p4(x) = p4(x (1), x (2)) = exp

⎧
⎪⎨

⎪⎩
−
(
x (1)
)2

η
−
(

x (1) − ρ
(
x (2)
)2 + 100ρ

)2

2

⎫
⎪⎬

⎪⎭
,

with η = 144.5 and ρ = 0.08. The banana-shaped distribution was first introduced
in Haario et al. (1999) and is known in literature to be a difficult target. This kind
of bidimensional and multimodal mixtures of densities is often used to compare the
performance of different MCMC techniques (Liang et al. 2010, Chapter 5; Haario et
al. 1999, 2001; Lan et al. 2012). The parameters of the Gaussian components and the
banana-shaped pdf are chosen in order to form a “smiling face” as illustrated in Fig. 4a.
The reason is that, in this way, it is possible to illustrate graphically the performance
of different samplers, as we show below.

To draw from po(x), we apply a MH and a MTM scheme using for both a random
walk Gaussian proposal pdf, i.e.,

π(xt |xt−1) ∝ exp

{

−
(

x (1)
t − x (1)

t−1

)2
/

(2σ 2
p) −

(
x (2)

t − x (2)
t−1

)2
/

(2σ 2
p)

}

.

In order to show the speed of the convergence of the samplers, we have generated only
500 samples with a MTM with different number of candidates N = 1, 5, 100, 1,000
(note with N = 1 is a standard MH) and different standard deviation σp = 5, 10 of
the proposal.

123



2818 L. Martino, J. Read

(a)

(b) (c)

(d) (e)

Fig. 4 a The Smiling-Face target density. The remaining figures b–e depict the first 500 generated samples
drawn from the different samplers in one run (with σp = 10). Note that the number of points are less than
500 since, in certain iterations, the chain remains in the same state (depending on the acceptance probability
α) so that some points are repeated. b Samples generated by a standard MH (N = 1). c Samples generated
by a MTM with N = 5. d Samples generated by a MTM with N = 100. e Samples generated by a MTM
with N = 1,000. It is evident that the MTM scheme speeds up the convergence of the Markov chain

Tables 9, 10 provide the average acceptance probability of a new state in the first
column (the averaged values of α), the jump rate among different modes in the second
column (from “left eye” to the “smile”, or from the “smile” to the “nose” etc.) and
the linear correlation for each component of x, in the last column. To compute the
mode-jump rate we establish that the state xt belongs to the mode i∗ if

i∗ = arg max
i∈{1,...,4} pi (xt ),
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Table 9 Numerical results with
σp = 5

Number of
tries N

Acceptance
rate

Mode-jump rate Correlation

N = 1
(standard MH)

0.2296 0.0401 x(1) → 0.9460

x(2) → 0.9749

N = 5 0.5118 0.1166 x(1) → 0.8661

x(2) → 0.9492

N = 100 0.7137 0.3373 x(1) → 0.6193

x(2) → 0.8508

N = 1,000 0.7919 0.4430 x(1) → 0.4724

x(2) → 0.7662

Table 10 Numerical results
with σp = 10

Number of
tries N

Acceptance
rate

Mode-jump rate Correlation

N = 1
(standard MH)

0.1464 0.0598 x(1) → 0.9097

x(2) → 0.9653

N = 5 0.4207 0.2313 x(1) → 0.7536

x(2) → 0.8454

N = 100 0.7670 0.5020 x(1) → 0.3570

x(2) → 0.4607

N = 1,000 0.8930 0.6520 x(1) → 0.1635

x(2) → 0.1453

where pi (xt ) are the 4 components in the mixture of Eq. (20). All results are averaged
over 2000 runs using σp = 5 in Table 9 and σp = 10 in Table 10.

From the tables, we can observe that the MTM clearly outperforms the standard
MH since, as N grows, the correlation decreases and the mode-jump rate increases
(as does the acceptance rate) regardless of the chosen parameter σp of the proposal.
Obviously, the mode-jump rate is always less than the average value of the probability
α of accepting a movement (the acceptance rate), since the mode-jumps represent a
subset of all accepted movements. Moreover, the standard deviation σp = 10 of the
proposal pdf works better for the MTM method. In general, the MTM schemes work
better with huge scaling parameters and a great-enough number of candidates N (see
also the discussion in the next section).

Figures 4b–e depict generated samples over one run. Clearly, in general we observe
less than 500 points since in certain cases a new movement is rejected and the chain
remains in the same state. Namely, certain points are repeated. This effect is evident
with the standard MH (N = 1) whereas it vanishes as the number of candidates
N grows. Moreover, with greater N , the number of jumps among different modes
also increases quickly. As a consequence, with the MTM technique (N = 5, 100,
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1,000) all the features of the “face” (our target pdf) are completely described since
the convergence of the chain is clearly speeded up. Therefore, with this numerical
example, the main advantage of a MTM method becomes apparent: it can explore a
larger portion of the sample space without a decrease of the acceptance rate, or even
an increase thereof.

7 Discussion

In this work, we have studied the flexibility in the design of MTM techniques. We
have introduced a MTM with generic weight functions (the analytic form can be cho-
sen arbitrarily) and different proposal densities (each candidate can be drawn from
a different pdf) combining the algorithms in Casarin et al. (2013) and Pandolfi et al.
(2010). Moreover, we have proposed a general framework for construction of accep-
tance probabilities in the MTM schemes, providing also specific examples. Finally,
we have also designed a MTM algorithm without the need to randomly generate the
reference points (Robert 2012). We have proved that the novel techniques satisfy the
detailed balance condition, and carried out numerical simulations. Observing the the-
oretical workings and the numerical results, we can make the following conclusions
and observations:

1. General considerations: The classical MTM method, proposed in (Liu et al. 2000),
clearly outperforms the standard MH algorithm using the same proposal pdf, in
the sense that as the number of candidates increases, N → ∞, then the correlation
decreases quickly to zero (see Sect. 6.3 for further considerations). If a designed
MTM scheme does not fulfill this property, then it is totally useless since the
computational cost increased but the performance is not improved. Suitable MTM
methods can be applied efficiently to any kind of target distributions (bounded or
unbounded, with heavy tails or not), as shown in our numerical simulations (see
Sect. 6.4). Moreover, the advantages of using a MTM technique w.r.t. a standard
MH algorithm clearly grow as the dimensionality of the target increases.

2. MTM schemes as black-box algorithms: the numerical simulations show that, with
a suitable number of tries N , the MTM methods provide good results independently
of the choice of the parameters of the proposal. Therefore, it is important to remark
that, even if no information about the target is available (for instance, about the
location of the modes), a MTM scheme allows the use of a proposal pdf with a
huge scaling parameter in order to explore quickly different regions of the space.
Indeed, using a great-enough number of tries, this black-box approach is quite
robust and always gives satisfactory performance. On other hand, with a huge
scaling parameter, a standard MH usually produces a very small rate of jumps
and, as a consequence, a very high correlation.

3. Choice of the weights: the possibility to choose any bounded and positive weight
functions makes the MTM scheme easier to design since the user does not need
to check any conditions of the weights (for instance symmetry of the function λ)
independently of the choice of proposal pdf. Namely, the proposal distribution
and the weight functions can be selected separately, to fit well to the specific
problem and to improve the performance of the technique. Note that, in some
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MTM approaches the symmetry condition of the function λ can be complicated,
see for instance (Martino et al. 2012a; Qin and Liu 2001).
Further theoretical or numerical studies are needed to determine the best choice
of weight functions given a certain proposal and target density. We find that the
weights of the analytic form proposed in Liu et al. (2000) (see for instance Eq. 4)
usually provide better results. Within this class, the importance weights ωi (yi ) =

p(yi )
πi (yi |x)

, based on the importance sampling principle (Liu 2004; Robert and Casella
2004), appear to be a good choice in theory. Numerical results also suggest that
weights simply proportional to the target density ωi (yi ) = p(yi ) can provide good
performance. In (Bédard et al. 2012) the authors note that importance weights place
higher probability on selecting candidates that are further away from the current
state of the chain, but finally they prefer to use weights proportional to the target
density based on numerical results.
If the evaluation of the target p(x) is computationally expensive such that the target
function can not be included in the calculations of the weights, then the weight
functions of the analytic class ωi (yi , x) = p(y1)πi (x |yi )λ(x, yi ) proposed in Liu
et al. (2000) cannot be used. Indeed, it is impossible to find a symmetric function
λ(x, y) = λ(y, x) in order to remove the dependence on p(x) in the weights (in
this case there is just one possibility that p(x) is constant, i.e., p(x) = p(y) for
all x, y ∈ D). In this case, a possible choice of the weights can be proportional
to the proposal pdfs, namely w(yi ) = π(x |yi ) for instance. Clearly, it is not the
optimal choice but, also in this case, the MTM can easily help to explore a larger
portion of the sample space w.r.t. standard MH (see Sect. 6.2).

4. Use of different proposal pdfs: a MTM scheme with different proposal densities
can be a very powerful framework mainly to tackle applications with high dimen-
sionality and target distributions with several modes. In our opinion, the most
promising scenario is to use different independent proposal distributions updating
certain parameters (as mean and variance) each iteration of the chain, or selecting
the best proposal among a set of functions (see Sect. 6.3 for further considerations).
In this adaptive framework, the independent proposal pdfs could improved to fit
better w.r.t. the target. This scheme has not been already exploited completely. It
is important to remark that, in order to obtain a fair comparison among the gener-
ated candidates, it is recommendable to use proposal functions with the same area
below, for instance they can be normalized.

5. Flexibility of the acceptance probabilities: we have shown that there is certain free-
dom in the design of a MTM algorithm, specifically in the choice of the acceptance
probability α. This is also confirmed by other works in literature that design suitable
MTM schemes with correlated candidates but they are quite different (the strate-
gies in Martino et al. 2012a; Qin and Liu 2001 generate the candidates sequentially,
whereas the approach in Craiu and Lemieux 2007 uses a block philosophy). How-
ever, although the detailed balance condition is always satisfied in all cases, the per-
formance is different. Numerical results suggest that α functions as close as possi-
ble to the standard MTM method (Liu et al. 2000), using also the weights of the ana-
lytic form in Eq. (4), provide better results. Similar considerations can be made with
respect to the standard MH algorithm (Barker 1965; Hastings 1970; Peskun 1973).
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6. Reference points: we have described a possible MTM algorithm without drawing
reference points. As seen in the numerical results, in this case it seems there
is an optimal number of candidates N . As N → ∞ the performance becomes
very poor. Therefore, we can figure out that the “secret” of the good performance
of the standard MTM scheme in (Frenkel and Smit 1996; Liu et al. 2000) is
contained in the random generation of the reference points. However, there exists
an important special case where the reference points are completely unnecessary:
using independent proposal densities. In this case, the reference points can be
set deterministically, equal to the previous generated candidates. This scheme,
using just one proposal (drawing N candidates from the same pdf) jointly with
importance weights, appears as the easiest and natural procedure to combine the
classical MH algorithm and importance sampling (Robert and Casella 2004) (see
Fig. 3a).

7. Number of candidates: All the schemes proposed in literature and also in this
work use a fixed number of candidates N . An important improvement would
consist on tuning adaptively the number N depending on the discrepancy between
target and proposal distributions. To do this, a certain measure is needed, for
instance, as the effective sample size of the importance sampling framework (Liu
2004; Robert and Casella 2004). Clearly, this idea could be more effective using
independent proposal pdf since it is necessary to measure the discrepancy between
the proposal and the target functions (with a random walk, for instance, the mean
of the proposal changes each step and the distance w.r.t. the target varies as well).
Another possibility could be to combine MTM and the delayed rejection method
(Mira 2001; Tierney and Mira 1999). With this kind of procedures, the optimal
trade off between computational cost and performance would be achieved.
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