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The Nakagami-m distribution is widely used for the simulation of
fading channels in wireless communications. A novel, simple and
extremely efficient acceptance-rejection algorithm is introduced for
the generation of independent Nakagami-m random variables. The pro-
posed method uses another Nakagami density with a half-integer value
of the fading parameter, mp ¼ n/2 ≤ m, as proposal function, from
which samples can be drawn exactly and easily. This novel rejection
technique is able to work with arbitrary values of m ≥ 1, average
path energy, V, and provides a higher acceptance rate than all currently
available methods.

Introduction: The Nakagami-m distribution is widely used to model the
wireless fading channel because of its good agreement with empirical
channel measurements for some urban multipath environments [1].
The Nakagami probability density function (PDF) is po(x) = Cpp(x),
with Cp = 2mm/[VG(m)] and

p(x) = x2m−1 exp − m

V
x2

( )
, x ≥ 0 (1)

where m ≥ 0.5 is the fading parameter, which indicates the fading depth,
and V . 0 is the average received power.

Several schemes for drawing samples from a Nakagami-m PDF have
been proposed. On the one hand, when m is an integer or half-integer
(i.e. m = n/2 with n [ N), independent samples can be generated
through the square root of a sum of squares of n zero-mean independent
identically distributed (IID) Gaussian random variables (RVs). On the
other hand, for m = n/2 several techniques have been proposed for
drawing correlated samples from (1) [2–4], but all of them present limit-
ations in terms of complexity, applicability or poor performance for
some values of m. Alternatively, several simple and efficient accep-
tance-rejection methods, using different proposals and with increasing
accuracy, have been recently introduced [5–7]. Currently, the best
results are provided by [7] using a truncated Gaussian PDF as the
proposal.

In this Letter we provide an extremely efficient acceptance-rejection
method for drawing independent samples from non-truncated (i.e.
without any restriction in the domain) Nakagami PDFs with m ≥ 1.
As a proposal, we consider another Nakagami PDF with an integer or
half-integer fading parameter, mp = n/2 ≤ m, from which samples
can be easily and efficiently drawn [8]. Our approach is valid for arbi-
trary values of the fading parameters m ≥ 1 (for many practical channels
1 ≤ m ≤ 15, as discussed in [9]) and V . 0. Furthermore, since our
proposal is another Nakagami PDF, the novel rejection scheme provides
a very good fit of the target, thus achieving very high acceptance rates
that tend to 100% (i.e. exact or rejectionless sampling) when
m � +1 and outperforming all the alternative techniques reported in
the literature.

Acceptance-rejection algorithm: Rejection sampling (RS) is a classical
technique for generating samples from an arbitrary target PDF,
po(x) = Cpp(x) with x [ D and Cp = [

�
D p(x)dx]−1, using an alterna-

tive simpler proposal PDF, po(x) = Cpp(x) with x [ D and
Cp = [

�
D p(x)dx]−1, such that p(x) ≥ p(x), i.e. p(x) is a hat function

w.r.t. p(x). RS works by generating samples from the proposal
density, x′ � po(x), accepting them when u′ ≤ p(x′)/p(x′), with u′ uni-
formly distributed in [0,1], and rejecting them otherwise. The key per-
formance measure for RS is the average acceptance rate,
aR =

�
D p(x)/p(x)po(x)dx = Cp/Cp ≤ 1. The value of aR depends on

how close the proposal is to the target, and determines the efficiency
of the approach. Hence, the main difficulty when designing an RS algor-
ithm is finding a good hat function, p(x) ≥ p(x), such that p(x) and p(x)
are as close as possible and drawing samples from po(x) = Cpp(x) can
be done easily and efficiently.

In this work, we consider as target density the PDF given by (1) with
m ≥ 1. As proposal PDF, we suggest using another Nakagami function
with different parameters, namely

po(x)/ p(x) = apx2mp−1 exp − mp

Vp
x2

( )
, x ≥ 0 (2)
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with mp = n/2, n = ⌊2m⌋ (with ⌊x⌋ denoting the integer part of x [ R),
and the remaining parameters (ap and Vp) adjusted to obtain the same
location and value of the maximum in the proposal as in the target:

Vp = 2mp

2mp − 1
x2

max = V
mp(2m − 1)
m(2mp − 1) (3)

ap = p(xmax)
x

2mp−1
max exp ( − mpx2

max/Vp)

= exp(mp − m) V(2m − 1)
2m

( )m−mp
(4)

where xmax is the location of the maximum of the Nakagami PDF,
obtained solving dp(x)/dx = 0, which results in

xmax =
������������
(2m − 1)V

2m

√
(5)

Note that we always have mp ≤ m, with mp being an integer or half-
integer value. Thanks to this choice of mp and the parameters derived
in (3) and (4), we can ensure that: (a) we can draw samples exactly
from po(x)/ p(x) [8]; (b) p(x) ≥ p(x) for all x ≥ 0, as proved in the
sequel. Fig. 1a shows an example of the target, p(x), our proposal,
p(x), and the proposal used in [7] for an unbounded domain, which
fits the true PDF in a much looser way than ours, thus leading to
worse acceptance rates.
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Fig. 1 Example (Fig. 1a) of Nakagami PDF (solid line) with m ¼ 1.8 and
V ¼ 5, our proposal (dashed line), and Gaussian proposal, p(x) ¼
p(xmax) exp(2m/V(x 2 xmax)

2) used in [7] for an unbounded domain
(circles). The two functions (Fig. 1b), ln(ap) + b x2 (dashed line) and
2(m 2 mp)ln(x) (solid line) in (9), when m ¼ 1.8 and V ¼ 5

Therefore, our algorithm follows these three simple steps: (a) calculate
the parameters of the proposal PDF, po(x)/ p(x); (b) draw a sample x′

from po(x) using the direct approach described in [8]: generate 2mp IID
Gaussian RVs, zk � N(0, 1) for 1 ≤ k ≤ 2mp, and set

x′ =

�����������
Vp

2mp

∑2mp

k=1
z2

k

√
(6)

(c) accept x′ with probability p(x′)/p(x′) and discard otherwise. Steps (b)
and (c) are repeated until the desired number of samples has been
obtained.

Proof of RS inequality: To apply the RS technique we need to ensure
that p(x) ≥ p(x), i.e.

apx2mp−1 exp −mpx2

Vp

( )
≥ x2m−1 exp −mx2

V

( )
∀x ≥ 0 (7)

Alternatively, (7) can be easily rewritten as

ap exp (bx2) ≥ x2(m−mp), ∀x ≥ 0 (8)

where b W m/V− mp/Vp and x2(m−mp) presents a sub-linear growth,
since 0 ≤ 2(m − mp) , 1. Finally, taking the logarithm on both sides
of (8),

lnap + bx2 ≥ 2(m − mp) ln x, ∀x ≥ 0 (9)

Now, since m ≥ mp and Vp is given by (3), we note that

b = m

V
− mp

Vp
= m

V
1 − 2mp − 1

2m − 1

( )
≥ 0 (10)

Hence, since we have ap . 0 from (4), the parabola on the left-hand side
of (9) is an increasing function with an increasing first derivative (i.e. a
convex function). Moreover, since m ≥ mp, the logarithmic function on
the right-hand side of (9) is also an increasing function, but with a
l. 48 No. 24



decreasing first derivative (i.e. a concave function). Consequently, since
both functions are increasing for x ≥ 0, but lnap + bx2 is convex and
2(m − mp) ln x is concave, they can have at most two intersection
points. However, as shown in Fig. 1b, the two functions are tangent at
x = xmax, which is the only contact point between both curves. To
prove this, we need to show that both functions are equal at x = xmax, i.e.

lnap + bx2
max = 2(m − mp) ln xmax

= (m − mp) ln
V(2m − 1)

2m

( ) (11)

and also that their first derivatives are equal, i.e.

d(lnap + bx2)
dx

∣∣∣∣
x=xmax

= d(2(m − mp) ln x)
dx

∣∣∣∣
x=xmax

= 2(m − mp)
xmax

=

���������������
8m(m − mp)2
(2m − 1)V

√ (12)

Therefore, since x2 grows faster than ln x, we can guarantee that
lnap + bx2 ≥ 2(m − mp) ln x ∀x ≥ 0, with equality only at x = xmax,
and the RS inequality in (7) is satisfied.

Results: To analyse the performance of the algorithm, we have com-
pared the acceptance rate (AR), aR, of our approach and the Gaussian
proposal used in [7] to draw samples from a Nakagami PDF without
truncation. The AR of our technique can be obtained analytically:

aR1 = (2e)m−mp
G(m)(2mp − 1)mp

G(mp)(2m − 1)m (13)

with G(m) denoting the gamma function, whereas the AR for the propo-
sal used in [7] can be approximated for m ≥ 4 as

aR2 ≃ em−1/2G(m)(2m − 1)1/2−m��
p

√
2m+1/2

(14)

Note that in both cases the AR is independent of the average received
power, V. Fig. 2 shows this AR, obtained empirically after drawing
N = 6 × 105 independent samples, for both approaches and several
values of the fading depth, m. It can be seen that our technique is extre-
mely efficient, outperforming the proposal used in [7] and providing the
best results ever reported in the literature for m ≥ 1. Furthermore, our
technique provides exact sampling (i.e. aR1 = 1) when m is an integer
or half-integer, since our proposal is equal to the target in these cases.
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Fig. 2 Acceptance rate (AR) using our proposal (continuous line) and the
one from [7] for an unbounded domain (dashed line) for 1 ≤ m ≤ 50
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Conclusion: We have proposed a rejection sampling (RS) scheme for
generating Nakagami random variables, with arbitrary values of
m ≥ 1 and V, where the proposal PDF is itself another Nakagami-m
density. The proposed algorithm is simple and extremely efficient, pro-
viding the best acceptance rates ever reported in the literature for m ≥ 1.
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