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» INTRODUCTION (framework) AND MOTIVATION



INTRODUCTION AND NOTATION

» Bayesian inference:
» g(x): prior pdf.
» {(y|x): likelihood function.
» X : variable of interest.
» y : observed data - measurements.
» Posterior pdf and marginal likelihood (evidence)

(y[x)g(x)
Z(y)

Z(y) = /X ((y[x)g(x)dx.

m(x) = p(xly) =

> In general, Z(y) is unknown, we can evaluate 7(x) o 7(x):

m(x) = £(ylx)g(x)-

In the following, we denote Z(y) simply as Z.



GOAL

>

Our goal is computing efficiently an integral w.r.t. the target

pdf, L
I = E;[f(x)] = > /X f(x)m(x)dx, (1)

where f is a square-integrable function, for instance,
. 1
Xmmse = = | xm(x)dx,
Z Jx
and the normalizing constant,
Z= / m(x)dx, (2)

via Monte Carlo.



MONTE CARLO APPROXIMATION

» (Monte Carlo) IDEAL CASE: Draw x(™) ~ 7(x),
m=1,...,M, and

1M
T=— (m)y ~
/ v Elf(x )~ .

» However, in general:

» it is not possible to draw from 7(x).
» Even in this "ideal” case it is not trivial to approximate
Z, ie., tofind 2~ Z.



MONTE CARLO - SAMPLING METHODS

» Since it is impossible to draw directly from 7(x):
» Importance Sampling = weighted samples.

» Markov Chain Monte Carlo (MCMC) = correlated samples.

» MC sampling techniques use a simpler proposal density g(x)
for generating random candidates, and then “filtering” them
according to some suitable rule.



IMPORTANCE SAMPLING (IS)

» Draw x(™ ~ g(x), m=1,..., M.

» Assign to each sample the unnormalized weights

» Compute

and



IMPORTANCE SAMPLING (IS)

» The IS approach is valid (i.e., | unbiased) since

Ex[f(x)] = Eq[w(x)f(x)],

% /X Fx)r(x)dx = / ;(q X)dx,

:/f x)w(x)g(x)dx.

> Since Z — Z, for M — oo, then 7—>7 is consistent.

» There are several possible combinations of sampling (x) and
weighting (w) strategies (this is only the classical approach).




PROPOSAL DENSITIES - PERFORMANCE

» The performance depends strictly on the choice of g(x) (in
any MC method).

» If we consider a specific function f, in IS:
» Optimal choice g(x) o |f(x)|7(x).

» If we consider a generic function f:
» Optimal choice g(x) = 7(x).




PROPOSAL DENSITIES - PERFORMANCE

» The performance depends strictly on the choice of g(x) (in
any MC method).

» If we consider a specific function f, in IS:
» Optimal choice g(x) o |f(x)|7(x).

» If we consider a generic function f:
» Optimal choice g(x) = 7(x).

» Hence, we need:

» q(x) as closer as possible to 7(x).
» proper tuning of the parameters;
» adaptive methods.
» Another strategy for increasing the robustness:

» Combined use of several proposal pdfs g1,..., gy-.



» LAYERED ADAPTIVE IMPORTANCE SAMPLING (LAIS)



IN THIS WORK: BRIEF SKETCH - CONTRIBUTIONS

» We design a class Adaptive Importance Sampling schemes
using a population of different proposals qi, ..., qn.

» We focus on the adaptation of the means (location
parameters) w1, ...,y of the proposals g1, ..., qy.
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IN THIS WORK: BRIEF SKETCH - CONTRIBUTIONS

» We mix the benefits of IS and MCMC methods:

» with MCMC — good explorative behavior.
» with IS — easy to estimate Z.

» Two layers of Monte Carlo:
1. Upper level - MCMC adaptation: The location parameters of
the proposal pdfs are updated via MCMC transitions.
2. Lower level - IS estimation: Different weighting strategies
yielding consistent IS estimators.




GENERAL LAIS ALGORITHM

Choose {qno}h_y, {ttn o} 1, and the covariance matrices {C,}A_;.
1. Fort=1,...,T:
1.1 Adaptation: Given {g, 1} ; apply MCMC transitions

(with invariant pdf 7), obtaining {g, N ;.
1.2 Generation: Draw M samples from each proposal,

Xg)np ~ qn,t(x|pfn,ta Cn)a

s

withm=1 ... Mand n=1,... N.
1.3 Weighting: Assign to each sample the weight

(m) _ W(Xfﬂ))
Wt =5y
(ﬁn,f(xn,t)

2. Output: Return all the pairs {xf,'r't), w,gf',_f)}, for all m, n and t.
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LAIS ALGORITHMS: OBSERVATIONS

1. A specific LAIS scheme is determined by the specific choices
of the MCMC strategies for adapting pn ¢, and the function
D, ;.

2. The outputs of the MCMC steps (pn,+'s) are not included in
the estimators. They are only used for adapting the location
parameters of the proposal pdfs.

3. Important feature: the MCMC adaptation (upper layer) is
independent from the estimation part (lower layer).

4. Important consideration: the function ®,: must produce
consistent IS estimators, (at least) in a static non-adaptive
scenario.



EXAMPLES OF ADAPTIVE STRATEGY

» Use N parallel Metropolis-Hastings methods:

{Hmtfl}rlyzl - {Nn,t}rlyzl-

» Forn=1,... N:
1. Draw p' ~ @n(p|pen,e—1),
2. Set p, = p’ with probability

(1 )pn(tne—1|p)
" (pn,e—1)@n( | n,e1)

a=min |1

otherwise set tn: = ptn—1 (with prob. 1 — ).



EXAMPLES OF PROPER WEIGHTING STRATEGIES

>

Ll

Proposal pdfs spread in time-space.
®,:(x) =Y(x) = 57 ZHNZI ZtT:1 Gn,+(x) (full deterministic mixture),

(%)
P, (x) = ¢e(x) = ﬁ Z,’Ll Gn,t(x) (partial deterministic mixture (2)).
P, :(x) = qn,:(x) (standard IS).
Iterations (Time)
Gax) | x| | ar(x) i
/g\[l qml.(x) . . qmt.(x) . . qnyT.(x) |—> &n (X)
S T '
% a0 | ave®) [ | avr(®)
g ! (x
5 v (bt (X) ( )

FiGURE: NT proposal pdfs, spread through the state space X
(n=1,...,N) and adapted over time (t =1,..., T).



CHOICE OF THE WEIGHTING STRATEGIES

All of them provide consistent estimators (in a static scenario).
Full DM: best performance - highest computational cost.
Partial DM (1): computational cost depending on T.

Partial DM (2): fixed computational cost, depending on N.

vV v.v. v Y

Standard IS: worst performance - lowest computational cost.



» CONSISTENCY OF THE ESTIMATORS (IN LAIS)
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CONSISTENCY

» The weights are proper (if g, +'s have heavier tails than 7),
providing consistent estimators in a static non-adaptive
scenario.

» However, the adaptation could jeopardize the consistency.
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CONSISTENCY

LAIS can always converted into a “static” IS algorithm.

» Indeed, the MCMC adaptation (upper layer) is independent
from the estimation part (lower layer).

We have described LAIS as an iterative IS method, repeating
adaptation and estimation steps but:

We can first generate all {p,}N | forallt=1,... T, and
then perform the IS estimation (drawing and weighting all the
x's).

First all the adaptation part, then all the estimation part.



CONSISTENCY

p(x1|p1) p(Xev1lper1)  p(xe|pe) (X1 |peet1)

p(#t+1|#t)

(a) Other methods. (b) LAIS.

F1cURE: Graphical models: adaptation schemes.

o
]



» THEORETICAL MOTIVATION OF PROPOSED MARKOV
ADAPTATION



AIS DRIVEN BY MCMC, WHY?

» We control directly the (stationary) distribution of {g, ¢ }N_;.

» {pn:}N | = distributed around the modes of 7.
» We take advantage of the explorative behavior of the MCMC
methods.



PRIOR FOR THE LOCATION PARAMETERS

» Consider the following hierarchical procedure:
Forn=1,...,N:

1. Draw p, ~ h(p),
2. Draw x, ~ q(x|gn, C).

» The equivalent proposal pdf is
A1) = | alx— ulC)h()dn,

i.e., X, ~ q(x|C).

o
o



HIERARCHICAL PROCEDURE IN LAIS

» Prior h(p) = 7(p).
» MCMC kernels K(ttn,¢|ten,t—1) yielding chains which converge

to ().
» The mixtures ®,; are Monte Carlo approximations of g(x|C).
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HIERARCHICAL PROCEDURE IN LAIS

» Prior h(p) = 7().
» MCMC kernels K(ten,t|tn,t—1) yielding chains which converge

to ().
» The mixtures ®,; are Monte Carlo approximations of g(x|C).

» The prior h(p) = T(p) is not optimal.

» But it can justify using a kernel density estimation (KDE)
argument:
- when h(p) = 7(p), g is a KDE of 7.
- there exists an optimal scale parameter C* such that
q(x|C*) is unbiased estimator of 7(x).



» NUMERICAL SIMULATIONS



MULTIMODAL TARGET DISTRIBUTION

» Consider the target pdf
5
7(x) =2 > N(xv, L), xR (4)
i=1
with means v = [-10,—10]", 1» = [0,16] ", v3 = [13,8] ",
va =[-9,7]", vs = [14,—14]", and covariance matrices
T, =[2 06;06, 1], o = [2, —0.4;—0.4, 2], £3 =[2, 0.8;0.8, 2],
>, =13, 0;0, 0.5] and X5 = [2, —0.1; -0.1, 2].
» The main challenge is the ability in discovering the 5 different modes of
m(x) o< mw(x).
> Since we know the moments of 7(x) (in this toy example), we can easily
compare the performance of the different techniques.

» We consider the problem of approximating via Monte Carlo the expected
value E[X] = [1.6,1.4] " and the normalizing constant Z = 1.
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PROPOSAL DENSITIES

» We compare LAIS with different alternative methods (using
the same number of target evaluations).

» We use Gaussian proposal densities for all the techniques: for
the IS estimation (lower layer of LAIS), we have

qn,t(x’Hn,tv Cn) = N(X; Hon,t, Cn)a

with covariance matrices C, = °l, and
o€ {05,1,2,5,10,20,70}.
» For the upper layer of LAIS (adaptation), we consider
SDn(X|Nn,ta An) = N(X; Mn,t, An)a

with A, = A2l and X € {5,10,70}.



MULTIMODAL TARGET DISTRIBUTION

ALGORITHM [c=05[c=1[c=2][c=5]c =100 =70]

M =99, T =20 | 1.2760 |0.5219 |0.5930 | 0.0214 | 0.0139 | 0.1815

A=5 M =19, T =100]| 0.2361 |0.1205 | 0.0422 | 0.0087 | 0.0140 | 0.1868

M =1, T =1000]| 0.1719 |0.0019 | 0.0155 | 0.0103 | 0.0273 | 0.3737

M =99, T =20 | 1.0195 [0.1546[0.2876 [ 0.0178 | 0.0133 | 0.1789

A=10 M =19, T =100| 0.1750 |0.0120 | 0.0528 | 0.0086 | 0.0136 | 0.1856

LAIS (N = 100) M =1, T =1000| 0.1550 |0.0021|0.0020 | 0.0095 | 0.0252 | 0.3648

M =99, T =20 [ 16.9913 | 5.5790 | 1.4925 | 0.0382 | 0.0128 | 0.1834

A=70 M =19, T =100| 2.6693 | 0.9182|0.1312 | 0.0147 | 0.0143 | 0.1844

M =1, T =1000| 0.3014 | 0.1042|0.0136 | 0.0115 | 0.0267 | 0.3697

M =199, T =20 [ 1.0707 [0.5364[0.3523[0.0199 | 0.0121 | 0.1919

Apj ~ U([1,10]) [M =19, T = 100| 0.2481 |0.0595 | 0.1376 | 0.0075 | 0.0144 | 0.1899

M =1, T =1000| 0.1046 | 0.0037 | 0.0045 | 0.0099 | 0.0274 | 0.3563

AMIS T (best results) [ 124.22 | 121.21 | 100.23 ] 0.8640 | 0.0121 | 0.0136
) [ (worst results) | 125.43 |123.38 | 114.82| 16.92 | 0.0128 | 18.66
PMC 112.99 | 114.11| 47.97 | 2.34 | 0.0559 | 2.41
VARIANT-PMC N =100, T = 2000 111.92 | 107.58 | 26.86 | 0.6731| 0.0744 | 2.42
MIXTURE PMC 110.17 |113.11 | 50.23 | 2.75 | 0.0521 2.57

TABLE: MSE obtained by different methods with the same number of
evaluations of the target pdf.



LAIS ADAPTATION VERSUS PMC ADAPTATION

2% 10 0 10 20 B -10 0 10 20
(a) PMC (N = 100, & = 5) (b) LAIS (N = 100, A = 5)
FIGURE: Initial (squares) and final (circles) configurations of the

location parameters of the proposal densities for the standard PMC and
the PI-MAIS methods, in a specific run.
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CONCLUSIONS

> LAIS is a very efficient algorithm which combines the benefits
of MCMC and IS.

» Tested in different scenarios/applications (with dimension
until 80); LAIS outperforms state-of-the-art methods.

» LAIS works particularly well addressing multimodal posterior
distributions.

» We obtain similar results only using additional information
about 7, like the gradient.

» We are working in order to provide a “clean” and optimized
free-code in Matlab and R.



» Thank you very much!

» Any questions?
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