LAYERED ADAPTIVE IMPORTANCE SAMPLING

Luca Martino

L. Martino, V. Elvira, D. Luengo, J. Corander. "Layered Adaptive Importance Sampling", (to appear) Statistics and Computing, 2016.

QMUL, 2016

OUTLINE

- 1. Introduction and motivation
- 2. Layered Adaptive Importance Sampling (LAIS)
- 3. Consistency of the estimators (in LAIS)
- 4. Theoretical motivation of the proposed Markov adaptation
- 5. Numerical simulations

▶ INTRODUCTION (framework) AND MOTIVATION

Introduction and notation

- ▶ Bayesian inference:
 - $ightharpoonup g(\mathbf{x})$: prior pdf.
 - $\ell(\mathbf{y}|\mathbf{x})$: likelihood function.
 - **x**: variable of interest.
 - y: observed data measurements.
 - Posterior pdf and marginal likelihood (evidence)

$$ar{\pi}(\mathbf{x}) =
ho(\mathbf{x}|\mathbf{y}) = rac{\ell(\mathbf{y}|\mathbf{x})g(\mathbf{x})}{Z(\mathbf{y})},$$
 $Z(\mathbf{y}) = \int_{\mathcal{X}} \ell(\mathbf{y}|\mathbf{x})g(\mathbf{x})d\mathbf{x}.$

▶ In general, $Z(\mathbf{y})$ is unknown, we can evaluate $\pi(\mathbf{x}) \propto \bar{\pi}(\mathbf{x})$:

$$\pi(\mathbf{x}) = \ell(\mathbf{y}|\mathbf{x})g(\mathbf{x}).$$

In the following, we denote Z(y) simply as Z.

GOAL

 Our goal is computing efficiently an integral w.r.t. the target pdf,

$$I = E_{\pi}[f(\mathbf{x})] = \frac{1}{Z} \int_{\mathcal{X}} f(\mathbf{x}) \pi(\mathbf{x}) d\mathbf{x}, \qquad (1)$$

where f is a square-integrable function, for instance,

$$\widehat{\mathbf{x}}_{MMSE} = \frac{1}{Z} \int_{\mathcal{X}} \mathbf{x} \pi(\mathbf{x}) d\mathbf{x},$$

and the normalizing constant,

$$Z = \int_{\mathcal{X}} \pi(\mathbf{x}) d\mathbf{x},\tag{2}$$

via Monte Carlo.

MONTE CARLO APPROXIMATION

► (Monte Carlo) IDEAL CASE: Draw $\mathbf{x}^{(m)} \sim \overline{\pi}(\mathbf{x})$, m = 1, ..., M, and

$$\widehat{I} = \frac{1}{M} \sum_{m=1}^{M} f(\mathbf{x}^{(m)}) \approx I.$$

- ► However, in general:
 - it is not possible to draw from $\bar{\pi}(\mathbf{x})$.
 - ▶ Even in this "ideal" case it is not trivial to approximate Z, i.e., to find $\widehat{Z} \approx Z$.

Monte Carlo - Sampling methods

- ▶ Since it is impossible to draw directly from $\bar{\pi}(\mathbf{x})$:
 - ► Importance Sampling ⇒ weighted samples.
 - ► Markov Chain Monte Carlo (MCMC) ⇒ correlated samples.
- MC sampling techniques use a simpler proposal density q(x) for generating random candidates, and then "filtering" them according to some suitable rule.

IMPORTANCE SAMPLING (IS)

- ▶ Draw $\mathbf{x}^{(m)} \sim q(\mathbf{x}), m = 1, ..., M.$
- ► Assign to each sample the unnormalized weights

$$w_m = \frac{\pi(\mathbf{x}^{(m)})}{q(\mathbf{x}^{(m)})}, \qquad m = 1, \dots, M.$$

Compute

$$\widetilde{I} = \frac{1}{Z} \frac{1}{M} \sum_{m=1}^{M} w_m f(\mathbf{x}^{(m)}).$$

or (if Z is unknown)

$$\widehat{I} = \sum_{m=1}^{M} \overline{w}_m f(\mathbf{x}^{(m)}) = \frac{1}{\sum_{m=1}^{M} w_m} \sum_{m=1}^{M} w_m f(\mathbf{x}^{(m)}).$$

and

$$\widehat{Z} = \frac{1}{M} \sum_{m=1}^{M} w_m \approx Z.$$

IMPORTANCE SAMPLING (IS)

▶ The IS approach is valid (i.e., \tilde{I} unbiased) since

$$E_{\pi}[f(\mathbf{x})] = E_{q}[w(\mathbf{x})f(\mathbf{x})],$$

$$\frac{1}{Z} \int_{\mathcal{X}} f(\mathbf{x}) \pi(\mathbf{x}) d\mathbf{x} = \frac{1}{Z} \int_{\mathcal{X}} f(\mathbf{x}) \frac{\pi(\mathbf{x})}{q(\mathbf{x})} q(\mathbf{x}) d\mathbf{x},$$
$$= \frac{1}{Z} \int_{\mathcal{X}} f(\mathbf{x}) w(\mathbf{x}) q(\mathbf{x}) d\mathbf{x}.$$

- ▶ Since $\widehat{Z} \to Z$, for $M \to \infty$, then $\widehat{I} \to \widetilde{I}$, is consistent.
- ► There are several possible combinations of sampling (x) and weighting (w) strategies (this is only the classical approach).

Proposal densities - performance

- ▶ The performance depends strictly on the choice of q(x) (in any MC method).
- \blacktriangleright If we consider a specific function f, in IS:
 - ▶ Optimal choice $q(\mathbf{x}) \propto |f(\mathbf{x})|\bar{\pi}(\mathbf{x})$.
- ▶ If we consider a generic function *f*:
 - ▶ Optimal choice $q(\mathbf{x}) = \bar{\pi}(\mathbf{x})$.

Proposal densities - performance

- ▶ The performance depends strictly on the choice of q(x) (in any MC method).
- ▶ If we consider a specific function *f* , in IS:
 - ▶ Optimal choice $q(\mathbf{x}) \propto |f(\mathbf{x})|\bar{\pi}(\mathbf{x})$.
- ▶ If we consider a generic function *f*:
 - ▶ Optimal choice $q(\mathbf{x}) = \bar{\pi}(\mathbf{x})$.
- ▶ Hence, we need:
 - $q(\mathbf{x})$ as closer as possible to $\bar{\pi}(\mathbf{x})$.
 - proper tuning of the parameters;
 - adaptive methods.
- Another strategy for increasing the robustness:
 - ▶ Combined use of several proposal pdfs $q_1, ..., q_N$.

► LAYERED ADAPTIVE IMPORTANCE SAMPLING (LAIS)

In this work: Brief Sketch - Contributions

- ▶ We design a class Adaptive Importance Sampling schemes using a population of different proposals $q_1, ..., q_N$.
- We focus on the adaptation of the means (location parameters) μ_1, \ldots, μ_N of the proposals q_1, \ldots, q_N .

IN THIS WORK: BRIEF SKETCH - CONTRIBUTIONS

- ▶ We mix the benefits of IS and MCMC methods:
 - with MCMC → good explorative behavior.
 - with IS \rightarrow easy to estimate Z.

In this work: Brief Sketch - Contributions

- ▶ We mix the benefits of IS and MCMC methods:
 - with MCMC → good explorative behavior.
 - with IS \rightarrow easy to estimate Z.
- Two layers of Monte Carlo:
 - 1. Upper level MCMC adaptation: The location parameters of the proposal pdfs are updated via MCMC transitions.
 - 2. Lower level <u>IS estimation</u>: Different weighting strategies yielding consistent IS estimators.

GENERAL LAIS ALGORITHM

Choose $\{q_{n,0}\}_{n=1}^N$, $\{\mu_{n,0}\}_{n=1}^N$, and the covariance matrices $\{\mathbf{C}_n\}_{n=1}^N$.

- 1. For t = 1, ..., T:
 - 1.1 **Adaptation:** Given $\{\mu_{n,t-1}\}_{n=1}^N$ apply MCMC transitions (with invariant pdf $\bar{\pi}$), obtaining $\{\mu_{n,t}\}_{n=1}^N$.
 - 1.2 **Generation:** Draw M samples from each proposal,

$$\mathsf{x}_{n,t}^{(m)} \sim q_{n,t}(\mathsf{x}|\boldsymbol{\mu}_{n,t},\mathsf{C}_n),$$

with $m = 1, \ldots, M$ and $n = 1, \ldots, N$.

1.3 **Weighting:** Assign to each sample the weight

$$w_{n,t}^{(m)} = \frac{\pi(\mathbf{x}_{n,t}^{(m)})}{\Phi_{n,t}(\mathbf{x}_{n,t}^{(m)})}$$

2. **Output:** Return all the pairs $\{\mathbf{x}_{n,t}^{(m)}, w_{n,t}^{(m)}\}$, for all m, n and t.

1. A specific LAIS scheme is determined by the specific choices of the MCMC strategies for adapting $\mu_{n,t}$, and the function $\Phi_{n,t}$.

- 1. A specific LAIS scheme is determined by the specific choices of the MCMC strategies for adapting $\mu_{n,t}$, and the function $\Phi_{n,t}$.
- 2. The outputs of the MCMC steps $(\mu_{n,t}$'s) are not included in the estimators. They are only used for adapting the location parameters of the proposal pdfs.

- 1. A specific LAIS scheme is determined by the specific choices of the MCMC strategies for adapting $\mu_{n,t}$, and the function $\Phi_{n,t}$.
- 2. The outputs of the MCMC steps $(\mu_{n,t}$'s) are not included in the estimators. They are only used for adapting the location parameters of the proposal pdfs.
- 3. Important feature: the MCMC adaptation (upper layer) is independent from the estimation part (lower layer).

- 1. A specific LAIS scheme is determined by the specific choices of the MCMC strategies for adapting $\mu_{n,t}$, and the function $\Phi_{n,t}$.
- 2. The outputs of the MCMC steps $(\mu_{n,t}$'s) are not included in the estimators. They are only used for adapting the location parameters of the proposal pdfs.
- 3. Important feature: the MCMC adaptation (upper layer) is independent from the estimation part (lower layer).
- 4. Important consideration: the function $\Phi_{n,t}$ must produce consistent IS estimators, (at least) in a static non-adaptive scenario.

EXAMPLES OF ADAPTIVE STRATEGY

Use N parallel Metropolis-Hastings methods:

$$\{\mu_{n,t-1}\}_{n=1}^N \to \{\mu_{n,t}\}_{n=1}^N.$$

- ▶ For n = 1, ..., N:
 - 1. Draw $\mu' \sim \varphi_n(\mu|\mu_{n,t-1})$,
 - 2. Set $\mu_{n,t} = \mu'$ with probability

$$\alpha = \min \left[1, \frac{\pi(\boldsymbol{\mu}')\varphi_n(\boldsymbol{\mu}_{n,t-1}|\boldsymbol{\mu}')}{\pi(\boldsymbol{\mu}_{n,t-1})\varphi_n(\boldsymbol{\mu}'|\boldsymbol{\mu}_{n,t-1})} \right]$$

otherwise set $\mu_{n,t} = \mu_{n,t-1}$ (with prob. $1 - \alpha$).

Examples of proper weighting strategies

Proposal pdfs spread in time-space.

1.
$$\Phi_{n,t}(\mathbf{x}) = \psi(\mathbf{x}) = \frac{1}{NT} \sum_{n=1}^{N} \sum_{t=1}^{T} q_{n,t}(\mathbf{x})$$
 (full deterministic mixture),

1.
$$\Phi_{n,t}(\mathbf{x}) = \psi(\mathbf{x}) = \frac{1}{NT} \sum_{n=1}^{N} \sum_{t=1}^{T} q_{n,t}(\mathbf{x})$$
 (full deterministic mixture),
2. $\Phi_{n,t}(\mathbf{x}) = \xi_n(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} q_{n,t}(\mathbf{x})$ (partial deterministic mixture (1)),

3.
$$\Phi_{n,t}(\mathbf{x}) = \phi_t(\mathbf{x}) = \frac{1}{N} \sum_{n=1}^{N} q_{n,t}(\mathbf{x})$$
 (partial deterministic mixture (2)).

4. $\Phi_{n,t}(\mathbf{x}) = q_{n,t}(\mathbf{x})$ (standard IS).

FIGURE: NT proposal pdfs, spread through the state space \mathcal{X} (n = 1, ..., N) and adapted over time (t = 1, ..., T).

CHOICE OF THE WEIGHTING STRATEGIES

- ▶ All of them provide consistent estimators (in a static scenario).
- ▶ Full DM: best performance highest computational cost.
- ▶ Partial DM (1): computational cost depending on T.
- ▶ Partial DM (2): fixed computational cost, depending on N.
- ▶ Standard IS: worst performance lowest computational cost.

► CONSISTENCY OF THE ESTIMATORS (IN LAIS)

▶ The weights are proper (if $q_{n,t}$'s have heavier tails than $\bar{\pi}$), providing consistent estimators in a static non-adaptive scenario.

- ▶ The weights are proper (if $q_{n,t}$'s have heavier tails than $\bar{\pi}$), providing consistent estimators in a static non-adaptive scenario.
- ▶ However, the adaptation could jeopardize the consistency.

▶ LAIS can always converted into a "static" IS algorithm.

- ▶ LAIS can always converted into a "static" IS algorithm.
- ► Indeed, the MCMC adaptation (upper layer) is independent from the estimation part (lower layer).
- ▶ We have described LAIS as an iterative IS method, repeating adaptation and estimation steps but:

- ▶ LAIS can always converted into a "static" IS algorithm.
- ► Indeed, the MCMC adaptation (upper layer) is independent from the estimation part (lower layer).
- ▶ We have described LAIS as an iterative IS method, repeating adaptation and estimation steps but:
- ▶ We can first generate all $\{\mu_{n,t}\}_{n=1}^N$ for all $t=1,\ldots T$, and then perform the IS estimation (drawing and weighting all the x's).
- First all the adaptation part, then all the estimation part.

FIGURE: Graphical models: adaptation schemes.

► THEORETICAL MOTIVATION OF PROPOSED MARKOV ADAPTATION

AIS DRIVEN BY MCMC, WHY?

- ▶ We control directly the (stationary) distribution of $\{\mu_{n,t}\}_{n=1}^N$.
- $\{\mu_{n,t}\}_{n=1}^N \Longrightarrow$ distributed around the modes of $\bar{\pi}$.
- We take advantage of the explorative behavior of the MCMC methods.

PRIOR FOR THE LOCATION PARAMETERS

- Consider the following hierarchical procedure: For n = 1, ..., N:
 - 1. Draw $\mu_n \sim h(\mu)$,
 - 2. Draw $\mathbf{x}_n \sim q(\mathbf{x}|\boldsymbol{\mu}_n, \mathbf{C})$.
- ► The equivalent proposal pdf is

$$\widetilde{q}(\mathbf{x}|\mathbf{C}) = \int_{\mathcal{X}} q(\mathbf{x} - \boldsymbol{\mu}|\mathbf{C}) h(\boldsymbol{\mu}) d\boldsymbol{\mu},$$
 (3)

i.e.,
$$\mathbf{x}_n \sim \widetilde{q}(\mathbf{x}|\mathbf{C})$$
.

HIERARCHICAL PROCEDURE IN LAIS

- ▶ MCMC kernels $K(\mu_{n,t}|\mu_{n,t-1})$ yielding chains which converge to $\bar{\pi}(\mu)$.
- ▶ The mixtures $\Phi_{n,t}$ are Monte Carlo approximations of $\widetilde{q}(\mathbf{x}|\mathbf{C})$.

HIERARCHICAL PROCEDURE IN LAIS

- Prior $h(\mu) = \bar{\pi}(\mu)$.
- ▶ MCMC kernels $K(\mu_{n,t}|\mu_{n,t-1})$ yielding chains which converge to $\bar{\pi}(\mu)$.
- ▶ The mixtures $\Phi_{n,t}$ are Monte Carlo approximations of $\widetilde{q}(\mathbf{x}|\mathbf{C})$.

▶ The prior $h(\mu) = \bar{\pi}(\mu)$ is not *optimal*.

HIERARCHICAL PROCEDURE IN LAIS

- Prior $h(\mu) = \bar{\pi}(\mu)$.
- ▶ MCMC kernels $K(\mu_{n,t}|\mu_{n,t-1})$ yielding chains which converge to $\bar{\pi}(\mu)$.
- ▶ The mixtures $\Phi_{n,t}$ are Monte Carlo approximations of $\widetilde{q}(\mathbf{x}|\mathbf{C})$.

- ▶ The prior $h(\mu) = \bar{\pi}(\mu)$ is not *optimal*.
- But it can justify using a kernel density estimation (KDE) argument:

HIERARCHICAL PROCEDURE IN LAIS

- ▶ MCMC kernels $K(\mu_{n,t}|\mu_{n,t-1})$ yielding chains which converge to $\bar{\pi}(\mu)$.
- ▶ The mixtures $\Phi_{n,t}$ are Monte Carlo approximations of $\widetilde{q}(\mathbf{x}|\mathbf{C})$.

- ▶ The prior $h(\mu) = \bar{\pi}(\mu)$ is not *optimal*.
- But it can justify using a kernel density estimation (KDE) argument:
 - when $h(\mu) = \bar{\pi}(\mu)$, \tilde{q} is a KDE of $\bar{\pi}$.
 - there exists an optimal scale parameter \mathbf{C}^* such that $\widetilde{q}(\mathbf{x}|\mathbf{C}^*)$ is unbiased estimator of $\overline{\pi}(\mathbf{x})$.

► NUMERICAL SIMULATIONS

Multimodal target distribution

Consider the target pdf

$$\bar{\pi}(\mathbf{x}) = \frac{1}{5} \sum_{i=1}^{5} \mathcal{N}(\mathbf{x}; \nu_i, \mathbf{\Sigma}_i), \quad \mathbf{x} \in \mathbb{R}^2,$$
 (4)

with means $\nu_1 = [-10, -10]^{\top}$, $\nu_2 = [0, 16]^{\top}$, $\nu_3 = [13, 8]^{\top}$, $\nu_4 = [-9, 7]^{\top}$, $\nu_5 = [14, -14]^{\top}$, and covariance matrices $\boldsymbol{\Sigma}_1 = [2, \ 0.6; 0.6, \ 1], \ \boldsymbol{\Sigma}_2 = [2, \ -0.4; -0.4, \ 2], \ \boldsymbol{\Sigma}_3 = [2, \ 0.8; 0.8, \ 2], \boldsymbol{\Sigma}_4 = [3, \ 0; 0, \ 0.5] \text{ and } \boldsymbol{\Sigma}_5 = [2, \ -0.1; -0.1, \ 2].$

- ► The main challenge is the ability in discovering the 5 different modes of $\bar{\pi}(\mathbf{x}) \propto \pi(\mathbf{x})$.
- Since we know the moments of $\bar{\pi}(\mathbf{x})$ (in this toy example), we can easily compare the performance of the different techniques.
- ▶ We consider the problem of approximating via Monte Carlo the expected value $E[\mathbf{X}] = [1.6, 1.4]^{\top}$ and the normalizing constant Z = 1.

Proposal densities

- ▶ We compare LAIS with different alternative methods (using the same number of target evaluations).
- We use Gaussian proposal densities for all the techniques: for the IS estimation (lower layer of LAIS), we have

$$q_{n,t}(\mathbf{x}|\boldsymbol{\mu}_{n,t},\mathbf{C}_n) = \mathcal{N}(\mathbf{x};\boldsymbol{\mu}_{n,t},\mathbf{C}_n),$$

with covariance matrices $\mathbf{C}_n = \sigma^2 \mathbf{I}_2$ and $\sigma \in \{0.5, 1, 2, 5, 10, 20, 70\}.$

▶ For the upper layer of LAIS (adaptation), we consider

$$\varphi_n(\mathbf{x}|\boldsymbol{\mu}_{n,t},\boldsymbol{\Lambda}_n) = \mathcal{N}(\mathbf{x};\boldsymbol{\mu}_{n,t},\boldsymbol{\Lambda}_n),$$

with $\Lambda_n = \lambda^2 \mathbf{I}_2$ and $\lambda \in \{5, 10, 70\}$.

MULTIMODAL TARGET DISTRIBUTION

Algorithm			$\sigma = 0.5$	$\sigma = 1$	$\sigma = 2$	$\sigma = 5$	$\sigma = 10$	$\sigma = 70$
LAIS (<i>N</i> = 100)	$\lambda = 5$	M = 99, T = 20	1.2760	0.5219	0.5930	0.0214	0.0139	0.1815
		M = 19, T = 100	0.2361	0.1205	0.0422	0.0087	0.0140	0.1868
		M = 1, T = 1000	0.1719	0.0019	0.0155	0.0103	0.0273	0.3737
	$\lambda = 10$	M = 99, T = 20	1.0195	0.1546	0.2876	0.0178	0.0133	0.1789
		M = 19, T = 100	0.1750	0.0120	0.0528	0.0086	0.0136	0.1856
		M = 1, T = 1000	0.1550	0.0021	0.0020	0.0095	0.0252	0.3648
	$\lambda = 70$	M = 99, T = 20	16.9913	5.5790	1.4925	0.0382	0.0128	0.1834
		M = 19, T = 100	2.6693	0.9182	0.1312	0.0147	0.0143	0.1844
		M = 1, T = 1000	0.3014	0.1042	0.0136	0.0115	0.0267	0.3697
	$\lambda_{n,j} \sim \mathcal{U}([1,10])$	M = 99, T = 20	1.0707	0.5364	0.3523	0.0199	0.0121	0.1919
		M = 19, T = 100	0.2481	0.0595	0.1376	0.0075	0.0144	0.1899
	-	M = 1, T = 1000	0.1046	0.0037	0.0045	0.0099	0.0274	0.3563
AMIS	(best results)		124.22	121.21	100.23	0.8640	0.0121	0.0136
	(worst results)		125.43	123.38	114.82	16.92	0.0128	18.66
PMC	N = 100, T = 2000		112.99	114.11	47.97	2.34	0.0559	2.41
VARIANT-PMC			111.92	107.58	26.86	0.6731	0.0744	2.42
MIXTURE PMC			110.17	113.11	50.23	2.75	0.0521	2.57

TABLE: MSE obtained by different methods with the same number of evaluations of the target pdf.

LAIS ADAPTATION VERSUS PMC ADAPTATION

FIGURE: Initial (squares) and final (circles) configurations of the location parameters of the proposal densities for the standard PMC and the PI-MAIS methods, in a specific run.

► LAIS is a very efficient algorithm which combines the benefits of MCMC and IS.

- ► LAIS is a very efficient algorithm which combines the benefits of MCMC and IS.
- Tested in different scenarios/applications (with dimension until 80); LAIS outperforms state-of-the-art methods.

- ► LAIS is a very efficient algorithm which combines the benefits of MCMC and IS.
- Tested in different scenarios/applications (with dimension until 80); LAIS outperforms state-of-the-art methods.
- LAIS works particularly well addressing multimodal posterior distributions.

- LAIS is a very efficient algorithm which combines the benefits of MCMC and IS.
- Tested in different scenarios/applications (with dimension until 80); LAIS outperforms state-of-the-art methods.
- LAIS works particularly well addressing multimodal posterior distributions.
- We obtain similar results only using additional information about π , like the gradient.

- ► LAIS is a very efficient algorithm which combines the benefits of MCMC and IS.
- Tested in different scenarios/applications (with dimension until 80); LAIS outperforms state-of-the-art methods.
- LAIS works particularly well addressing multimodal posterior distributions.
- We obtain similar results only using additional information about π , like the gradient.
- We are working in order to provide a "clean" and optimized free-code in Matlab and R.

- ► Thank you very much!
- ► Any questions?

Main references

[Owen00]: A.Owen, Y.Zhou. Safe and effective importance sampling. *Journal of the American Statistical Association*, 95 (449):135-143. 2000.

[Elvira15]: V. Elvira, L. Martino, D. Luengo, and M. Bugallo. Efficient multiple importance sampling estimators. *IEEE Signal Processing Letters*, 22 (10):1757-1761, 2015.

[Cornuet12]: J.M. Cornuet, J.M. Marin, A. Mira, C.P. Robert. Adaptive multiple importance sampling. *Scandinavian Journal of Statistics*, 39 (4):798-812, 2012.

[Martino15]: L. Martino, V. Elvira, D. Luengo, J. Corander. An adaptive population importance sampler: Learning from the uncertainty. *IEEE Transactions on Signal Processing* (In Press), 2015.

[Cappe04]: O. Cappé, A. Guillin, J. M. Marin, and C. P. Robert. Population Monte Carlo. *Journal of Computational and Graphical Statistics*, 13 (4):907-929, 2004.