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I INTRODUCTION (framework) AND MOTIVATION
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Introduction and notation

I Bayesian inference:

I g(x): prior pdf.
I `(y|x): likelihood function.
I x : variable of interest.
I y : observed data - measurements.
I Posterior pdf and marginal likelihood (evidence)

π̄(x) = p(x|y) =
`(y|x)g(x)

Z (y)
,

Z (y) =

∫
X
`(y|x)g(x)dx.

I In general, Z (y) is unknown, we can evaluate π(x) ∝ π̄(x):

π(x) = `(y|x)g(x).

In the following, we denote Z (y) simply as Z .
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Goal

I Our goal is computing efficiently an integral w.r.t. the target
pdf,

I = Eπ[f (x)] =
1

Z

∫
X

f (x)π(x)dx, (1)

where f is a square-integrable function, for instance,

x̂MMSE =
1

Z

∫
X

xπ(x)dx,

and the normalizing constant,

Z =

∫
X
π(x)dx, (2)

via Monte Carlo.
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Monte Carlo approximation

I (Monte Carlo) IDEAL CASE: Draw x(m) ∼ π̄(x),
m = 1, . . . ,M, and

Î =
1

M

M∑
m=1

f (x(m)) ≈ I .

I However, in general:

I it is not possible to draw from π̄(x).
I Even in this ”ideal” case it is not trivial to approximate

Z , i.e., to find Ẑ ≈ Z .
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Monte Carlo - Sampling methods

I Since it is impossible to draw directly from π̄(x):
I Importance Sampling =⇒ weighted samples.
I Markov Chain Monte Carlo (MCMC) =⇒ correlated samples.

I MC sampling techniques use a simpler proposal density q(x)
for generating random candidates, and then “filtering” them
according to some suitable rule.
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Importance sampling (IS)

I Draw x(m) ∼ q(x), m = 1, . . . ,M.

I Assign to each sample the unnormalized weights

wm =
π(x(m))

q(x(m))
, m = 1, . . . ,M.

I Compute eI =
1

Z

1

M

MX
m=1

wmf (x(m)).

or (if Z is unkonwn)

bI =
MX

m=1

w̄mf (x(m)) =
1PM

m=1 wm

MX
m=1

wmf (x(m)).

and bZ =
1

M

MX
m=1

wm ≈ Z .
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Importance sampling (IS)

I The IS approach is valid (i.e., Ĩ unbiased) since

Eπ[f (x)] = Eq[w(x)f (x)],

1

Z

∫
X

f (x)π(x)dx =
1

Z

∫
X

f (x)
π(x)

q(x)
q(x)dx,

=
1

Z

∫
X

f (x)w(x)q(x)dx.

I Since Ẑ → Z , for M →∞, then Î → Ĩ , is consistent.

I There are several possible combinations of sampling (x) and
weighting (w) strategies (this is only the classical approach).
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Proposal densities - performance

I The performance depends strictly on the choice of q(x) (in
any MC method).

I If we consider a specific function f , in IS:

I Optimal choice q(x) ∝ |f (x)|π̄(x).
I If we consider a generic function f :

I Optimal choice q(x) = π̄(x).

——————————————————————————

I Hence, we need:

I q(x) as closer as possible to π̄(x).
I proper tuning of the parameters;
I adaptive methods.

I Another strategy for increasing the robustness:

I Combined use of several proposal pdfs q1, . . . , qN .
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I LAYERED ADAPTIVE IMPORTANCE SAMPLING (LAIS)
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In this work: brief sketch - contributions

I We design a class Adaptive Importance Sampling schemes
using a population of different proposals q1, . . . , qN .

I We focus on the adaptation of the means (location
parameters) µ1, . . . ,µN of the proposals q1, . . . , qN .
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In this work: brief sketch - contributions

I We mix the benefits of IS and MCMC methods:

I with MCMC → good explorative behavior.
I with IS → easy to estimate Z .

I Two layers of Monte Carlo:

1. Upper level - MCMC adaptation: The location parameters of
the proposal pdfs are updated via MCMC transitions.

2. Lower level - IS estimation: Different weighting strategies
yielding consistent IS estimators.
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General LAIS algorithm

Choose {qn,0}Nn=1, {µn,0}Nn=1, and the covariance matrices {Cn}Nn=1.

1. For t = 1, . . . ,T :

1.1 Adaptation: Given {µn,t−1}Nn=1 apply MCMC transitions
(with invariant pdf π̄), obtaining {µn,t}Nn=1.

1.2 Generation: Draw M samples from each proposal,

x
(m)
n,t ∼ qn,t(x|µn,t ,Cn),

with m = 1, . . . ,M and n = 1, . . . ,N.
1.3 Weighting: Assign to each sample the weight

w
(m)
n,t =

π(x
(m)
n,t )

Φn,t(x
(m)
n,t )

2. Output: Return all the pairs {x(m)
n,t ,w

(m)
n,t }, for all m, n and t.
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LAIS algorithms: observations

1. A specific LAIS scheme is determined by the specific choices
of the MCMC strategies for adapting µn,t , and the function
Φn,t .

2. The outputs of the MCMC steps (µn,t ’s) are not included in
the estimators. They are only used for adapting the location
parameters of the proposal pdfs.

3. Important feature: the MCMC adaptation (upper layer) is
independent from the estimation part (lower layer).

4. Important consideration: the function Φn,t must produce
consistent IS estimators, (at least) in a static non-adaptive
scenario.
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Examples of adaptive strategy

I Use N parallel Metropolis-Hastings methods:

{µn,t−1}Nn=1 → {µn,t}Nn=1.

I For n = 1, . . . ,N :

1. Draw µ′ ∼ ϕn(µ|µn,t−1),
2. Set µn,t = µ′ with probability

α = min

[
1,

π(µ′)ϕn(µn,t−1|µ′)
π(µn,t−1)ϕn(µ′|µn,t−1)

]
otherwise set µn,t = µn,t−1 (with prob. 1− α).
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Examples of proper weighting strategies
I Proposal pdfs spread in time-space.

1. Φn,t(x) = ψ(x) = 1
NT

PN
n=1

PT
t=1 qn,t(x) (full deterministic mixture),

2. Φn,t(x) = ξn(x) = 1
T

PT
t=1 qn,t(x) (partial deterministic mixture (1)) ,

3. Φn,t(x) = φt(x) = 1
N

PN
n=1 qn,t(x) (partial deterministic mixture (2)).

4. Φn,t(x) = qn,t(x) (standard IS).

Iterations (Time)

D
om

ai
n

(S
pa

ce
)

 (x)

q1,1(x) . . . q1,t(x) . . . q1,T (x)
...

...
...

...
...

qn,1(x) . . . qn,t(x) . . . qn,T (x)
...

...
...

...
...

qN,1(x) . . . qN,t(x) . . . qN,T (x)

�t(x)

⇠n(x)

Figure: NT proposal pdfs, spread through the state space X
(n = 1, . . . ,N) and adapted over time (t = 1, . . . ,T ).
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Choice of the weighting strategies

I All of them provide consistent estimators (in a static scenario).

I Full DM: best performance - highest computational cost.

I Partial DM (1): computational cost depending on T .

I Partial DM (2): fixed computational cost, depending on N.

I Standard IS: worst performance - lowest computational cost.
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I CONSISTENCY OF THE ESTIMATORS (IN LAIS)
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Consistency

I The weights are proper (if qn,t ’s have heavier tails than π̄),
providing consistent estimators in a static non-adaptive
scenario.

I However, the adaptation could jeopardize the consistency.
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Consistency

I LAIS can always converted into a “static” IS algorithm.

I Indeed, the MCMC adaptation (upper layer) is independent
from the estimation part (lower layer).

I We have described LAIS as an iterative IS method, repeating
adaptation and estimation steps but:

I We can first generate all {µn,t}Nn=1 for all t = 1, . . .T , and
then perform the IS estimation (drawing and weighting all the
x’s).

I First all the adaptation part, then all the estimation part.
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Consistency

xt xt+1

µt+1µt

p(xt|µt) p(xt+1|µt+1)

x1

µ1

. . . . . .

p(x1|µ1)

(a) Other methods.

xt xt+1

µt+1µt

p(xt|µt) p(xt+1|µt+1)

p(µt+1|µt)

(b) LAIS.

Figure: Graphical models: adaptation schemes.
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I THEORETICAL MOTIVATION OF PROPOSED MARKOV
ADAPTATION
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AIS driven by MCMC, why?

I We control directly the (stationary) distribution of {µn,t}Nn=1.

I {µn,t}Nn=1 =⇒ distributed around the modes of π̄.

I We take advantage of the explorative behavior of the MCMC
methods.
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Prior for the location parameters

I Consider the following hierarchical procedure:
For n = 1, . . . ,N:

1. Draw µn ∼ h(µ),
2. Draw xn ∼ q(x|µn,C).

I The equivalent proposal pdf is

q̃(x|C) =

∫
X

q(x− µ|C)h(µ)dµ, (3)

i.e., xn ∼ q̃(x|C).
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Hierarchical procedure in LAIS

I Prior h(µ) = π̄(µ).

I MCMC kernels K (µn,t |µn,t−1) yielding chains which converge
to π̄(µ).

I The mixtures Φn,t are Monte Carlo approximations of q̃(x|C).

————————————————————————————

I The prior h(µ) = π̄(µ) is not optimal.

I But it can justify using a kernel density estimation (KDE)
argument:
- when h(µ) = π̄(µ), q̃ is a KDE of π̄.
- there exists an optimal scale parameter C∗ such that
q̃(x|C∗) is unbiased estimator of π̄(x).
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I NUMERICAL SIMULATIONS
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Multimodal target distribution

I Consider the target pdf

π̄(x) =
1

5

5X
i=1

N (x; νi ,Σi ), x ∈ R2, (4)

with means ν1 = [−10,−10]>, ν2 = [0, 16]>, ν3 = [13, 8]>,
ν4 = [−9, 7]>, ν5 = [14,−14]>, and covariance matrices
Σ1 = [2, 0.6; 0.6, 1], Σ2 = [2, −0.4;−0.4, 2], Σ3 = [2, 0.8; 0.8, 2],
Σ4 = [3, 0; 0, 0.5] and Σ5 = [2, −0.1;−0.1, 2].

I The main challenge is the ability in discovering the 5 different modes of
π̄(x) ∝ π(x).

I Since we know the moments of π̄(x) (in this toy example), we can easily
compare the performance of the different techniques.

I We consider the problem of approximating via Monte Carlo the expected
value E [X] = [1.6, 1.4]> and the normalizing constant Z = 1.
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Proposal densities

I We compare LAIS with different alternative methods (using
the same number of target evaluations).

I We use Gaussian proposal densities for all the techniques: for
the IS estimation (lower layer of LAIS), we have

qn,t(x|µn,t ,Cn) = N (x; µn,t ,Cn),

with covariance matrices Cn = σ2I2 and
σ ∈ {0.5, 1, 2, 5, 10, 20, 70}.

I For the upper layer of LAIS (adaptation), we consider

ϕn(x|µn,t ,Λn) = N (x; µn,t ,Λn),

with Λn = λ2I2 and λ ∈ {5, 10, 70}.
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Multimodal target distribution

Algorithm σ = 0.5 σ = 1 σ = 2 σ = 5 σ = 10 σ = 70

λ = 5
M = 99,T = 20 1.2760 0.5219 0.5930 0.0214 0.0139 0.1815
M = 19,T = 100 0.2361 0.1205 0.0422 0.0087 0.0140 0.1868
M = 1,T = 1000 0.1719 0.0019 0.0155 0.0103 0.0273 0.3737

λ = 10
M = 99,T = 20 1.0195 0.1546 0.2876 0.0178 0.0133 0.1789
M = 19,T = 100 0.1750 0.0120 0.0528 0.0086 0.0136 0.1856

LAIS (N = 100) M = 1,T = 1000 0.1550 0.0021 0.0020 0.0095 0.0252 0.3648

λ = 70
M = 99,T = 20 16.9913 5.5790 1.4925 0.0382 0.0128 0.1834
M = 19,T = 100 2.6693 0.9182 0.1312 0.0147 0.0143 0.1844
M = 1,T = 1000 0.3014 0.1042 0.0136 0.0115 0.0267 0.3697

λn,j ∼ U([1, 10])
M = 99,T = 20 1.0707 0.5364 0.3523 0.0199 0.0121 0.1919
M = 19,T = 100 0.2481 0.0595 0.1376 0.0075 0.0144 0.1899
M = 1,T = 1000 0.1046 0.0037 0.0045 0.0099 0.0274 0.3563

AMIS
(best results) 124.22 121.21 100.23 0.8640 0.0121 0.0136
(worst results) 125.43 123.38 114.82 16.92 0.0128 18.66

PMC 112.99 114.11 47.97 2.34 0.0559 2.41
variant-PMC N = 100, T = 2000 111.92 107.58 26.86 0.6731 0.0744 2.42
Mixture PMC 110.17 113.11 50.23 2.75 0.0521 2.57

Table: MSE obtained by different methods with the same number of
evaluations of the target pdf.
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LAIS adaptation versus PMC adaptation

−20 −10 0 10 20−20

−10

0

10

20

(a) PMC (N = 100, σ = 5)

−20 −10 0 10 20−20

−10

0

10

20

(b) LAIS (N = 100, λ = 5)

Figure: Initial (squares) and final (circles) configurations of the
location parameters of the proposal densities for the standard PMC and
the PI-MAIS methods, in a specific run.
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Conclusions

I LAIS is a very efficient algorithm which combines the benefits
of MCMC and IS.

I Tested in different scenarios/applications (with dimension
until 80); LAIS outperforms state-of-the-art methods.

I LAIS works particularly well addressing multimodal posterior
distributions.

I We obtain similar results only using additional information
about π, like the gradient.

I We are working in order to provide a “clean” and optimized
free-code in Matlab and R.
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I Thank you very much!

I Any questions?
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