Effective Sample Size for Importance SAmpling (FUNNY STORY)

L. Martino

jointly with V. Elvira
The Magic of the L'Hospital's Rule...

Approximating integrals

- In Bayesian inference, we often need to compute efficiently integrals involving the (posterior) target pdf $\bar{\pi}(\mathbf{x})=\frac{1}{Z} \pi(\mathbf{x})$,

$$
\begin{equation*}
I(h)=\int_{\mathcal{X}} h(\mathbf{x}) \bar{\pi}(\mathbf{x}) d \mathbf{x}=\frac{1}{Z} \int_{\mathcal{X}} h(\mathbf{x}) \pi(\mathbf{x}) d \mathbf{x} \tag{1}
\end{equation*}
$$

- We approximate $I(h)$ by Monte Carlo methods.

Monte Carlo - Importance Sampling (IS)

- STANDARD-"IDEAL" CASE: Draw $\mathbf{x}_{n} \sim \bar{\pi}(\mathbf{x}), n=1, \ldots, N$, and

$$
\widehat{I}(h)=\frac{1}{N} \sum_{n=1}^{N} h\left(\mathbf{x}_{n}\right) \underset{N \rightarrow \infty}{\longrightarrow} I
$$

- In general, it is not possible to draw from $\bar{\pi}(\mathbf{x})$.

Monte Carlo - Importance Sampling (IS)

- STANDARD-"IDEAL" CASE: Draw $\mathrm{x}_{n} \sim \bar{\pi}(\mathrm{x}), n=1, \ldots, N$, and

$$
\widehat{I}(h)=\frac{1}{N} \sum_{n=1}^{N} h\left(\mathbf{x}_{n}\right) \underset{N \rightarrow \infty}{\longrightarrow} I
$$

- In general, it is not possible to draw from $\bar{\pi}(\mathbf{x})$.
- IMPORTANCE SAMPLING (IS): Draw $\mathbf{x}_{n} \sim q(\mathbf{x})$, $n=1, \ldots, N$,

$$
\widetilde{I}(h)=\sum_{n=1}^{N} \bar{w}_{n} h\left(\mathbf{x}_{n}\right) \underset{N \rightarrow \infty}{\longrightarrow} I .
$$

where

$$
w_{n}=\frac{\pi\left(\mathbf{x}_{n}\right)}{q\left(\mathbf{x}_{n}\right)}, \quad \bar{w}_{n}=\frac{w_{n}}{\sum_{n=1}^{N} w_{n}} .
$$

Effective Sample Size (ESS)

- Generally, using IS, we lose some efficiency w.r.t. the standard MC case.
- From a theoretical and practical point of view, it is important to measure this loss of efficiency.
- Statistically speaking: do my N weighted samples correspond to E samples (with $E<N$) independently drawn from $\bar{\pi}$?
- A possible math-definition of the Effective Sample Size (ESS) is:

$$
\begin{equation*}
E=E S S=N \frac{\operatorname{var}_{\pi}[\widehat{[l]}}{\operatorname{var}_{q} \widetilde{[l]}} \tag{2}
\end{equation*}
$$

See [Kong92].

Effective Sample Size (ESS) - Definition Drawbacks/ observations

- The definition depends on $h(\mathbf{x})$:

$$
E S S(h)=N \frac{\operatorname{var}_{\pi}[\widehat{I}(h)]}{\operatorname{var}_{q}[\widetilde{I}(h)]}
$$

- A more complete definition should be:

$$
\begin{equation*}
E S S=N \frac{\mathrm{MSE}_{\pi}[\widehat{l}]}{\mathrm{MSE}_{q}[\widetilde{l}]}=N \frac{\operatorname{var}_{\pi}[\widehat{l}]}{\mathrm{MSE}_{q}[\widetilde{l}]} \tag{3}
\end{equation*}
$$

Effective Sample Size in practice

- However, the theoretical formula is "useless" from a practical point of view.

$$
E S S=N \frac{\left.\operatorname{var}_{\pi} \widehat{l}\right]}{\left.\operatorname{var}_{[} \widetilde{l}\right]} \xrightarrow{\text { Kong92 }} \widehat{E S S}=?
$$

- Try to find something that we can easily compute.

Effective Sample Size in practice

- After several approximations and assumptions, one can obtain

$$
\begin{equation*}
E S S \approx \widehat{E S S}=P_{N}^{(2)}(\overline{\mathbf{w}})=\frac{1}{\sum_{n=1}^{N}\left(\bar{w}_{n}\right)^{2}} \tag{4}
\end{equation*}
$$

where $\overline{\mathbf{w}}=\left[\bar{w}_{1}, \ldots, \bar{w}_{N}\right]$ is the vector of normalized weights.

- Several methods (particle filters, population Monte Carlo, adaptive importance sampling schemes) use this formula above.
- It is possible to show that

$$
\begin{equation*}
1 \leq P_{N}^{(2)}(\overline{\mathbf{w}}) \leq N \tag{5}
\end{equation*}
$$

See [Kong92,Robert10,Liu01].

WEAKNESSES OF $P_{N}^{(2)}(\overline{\mathbf{w}})$

- Due to the several approximations and strong assumptions: loss of information

- $P_{N}^{(2)}$ does not depend on $h(\mathbf{x})$.
- $P_{N}^{(2)}$ does not depend on the samples \mathbf{x}_{n}.
- One assumption is that $\mathbf{x}_{n} \sim q(\mathbf{x})$ for all n, but in different methods, we have $\mathbf{x}_{1} \sim q_{1}(\mathbf{x}), \ldots, \mathbf{x}_{N} \sim q_{N}(\mathbf{x})$.
- By definition of $E S S=N \frac{\operatorname{var}_{\pi}[\hat{l}]}{\operatorname{var}_{q}[l]}$, we can have

$$
0 \leq E S S \leq B, \quad B \geq N
$$

Strengths/REASONS To use $P_{N}^{(2)}(\overline{\mathbf{w}})$

- Why is it used? It works reasonable well in different applications: people like it.
- Using only the info of the normalized weights \bar{w}_{n}, the inequalities $1 \leq P_{N}^{(2)}(\overline{\mathbf{w}}) \leq N$ are reasonable. It applies an optimistic approach:

$$
\begin{gather*}
\overline{\mathbf{w}}^{*}=\left[\frac{1}{N}, \ldots, \frac{1}{N}\right] \Longrightarrow P_{N}^{(2)}\left(\overline{\mathbf{w}}^{*}\right)=N \tag{6}\\
\overline{\mathbf{w}}^{(i)}=[0, \ldots, \underbrace{1}_{i}, \ldots, 0] \Longrightarrow P_{N}^{(2)}\left(\overline{\mathbf{w}}^{(i)}\right)=1 \tag{7}
\end{gather*}
$$

- easy to be used, for adaptive resampling:

$$
P_{N}^{(2)}(\overline{\mathbf{w}}) \leq \epsilon N
$$

with $0<\epsilon<1$.

Alternative Derivation/MOtivation of $P_{N}^{(2)}(\overline{\mathbf{w}})$

- Alternative derivation based on the need (or not) of resampling.
- Let us consider the Euclidean distance L_{2} between these two the discrete uniform $\operatorname{pmf} \mathcal{U}\{1,2, \ldots, N\}$ and the $\operatorname{pmf} \bar{w}_{n}$, i.e,

$$
\begin{align*}
L_{2} & =\sqrt{\sum_{n=1}^{N}\left(\bar{w}_{n}-\frac{1}{N}\right)^{2}} \\
& =\sqrt{\left(\sum_{n=1}^{N} \bar{w}_{n}^{2}\right)+N\left(\frac{1}{N^{2}}\right)-\frac{2}{N} \sum_{n=1}^{N} \bar{w}_{n}} \\
& =\sqrt{\left(\sum_{n=1}^{N} \bar{w}_{n}^{2}\right)-\frac{1}{N}} \\
& =\sqrt{\frac{1}{P_{N}^{(2)}(\overline{\mathbf{w}})}-\frac{1}{N}} . \tag{8}
\end{align*}
$$

- Maximizing $P_{N}^{(2)}$ corresponds to minimize L_{2}.

So far: Little summary

- So far: $\widehat{E S S}=P_{N}^{(2)}(\overline{\mathbf{w}})$ is a "bad" approximation of the theoretical definition.
- But the people like and use it; the main reason: maximizing $P_{N}^{(2)}$ corresponds to minimize L_{2}.
- Discrepancy/distance between pmf $\overline{\mathbf{w}}$ and uniform pmf $1 / N$.
- Are there alternatives of the same type?

So far: Little summary

- So far: $\widehat{E S S}=P_{N}^{(2)}(\overline{\mathbf{w}})$ is a "bad" approximation of the theoretical definition.
- But the people like and use it; the main reason: maximizing $P_{N}^{(2)}$ corresponds to minimize L_{2}.
- Discrepancy/distance between pmf $\overline{\mathbf{w}}$ and uniform pmf $1 / N$.
- Are there alternatives of the same type?
- (PS: the formula $P_{N}^{(2)}(\overline{\mathbf{w}})$ is also known as Kish's Effective Sample Size and is used in other branches of statistics that involve weighted samples)
- (PS2: for correlated samples, we have another formula)

Alternatives: ESS approx based on DISCREPANCY

- Other authors also propose the perplexity measure based on the discrete entropy [Cappe08].

Alternatives: ESS approx based on DISCREPANCY

- Other authors also propose the perplexity measure based on the discrete entropy [Cappe08].
- We can also consider

$$
\begin{equation*}
\widehat{E S S}=D_{N}^{(\infty)}(\overline{\mathbf{w}})=\frac{1}{\max \left[\bar{w}_{1}, \ldots, \bar{w}_{N}\right]} \tag{9}
\end{equation*}
$$

- Note that $1 \leq D_{N}^{(\infty)}(\overline{\mathbf{w}}) \leq N$.

Generalized ESS functions

- Generalized ESS (G-ESS) function:

$$
\begin{equation*}
E_{N}(\overline{\mathbf{w}})=E_{N}\left(\bar{w}_{1}, \ldots, \bar{w}_{N}\right): \mathcal{S}_{N} \rightarrow[1, N] \tag{10}
\end{equation*}
$$

where $\mathcal{S}_{N} \subset \mathbb{R}^{N}$ represents the unit simplex, namely,

$$
\bar{w}_{1}+\bar{w}_{2}+\ldots+\bar{w}_{N}=1
$$

Recall, we denote the vertices of the unit simplex as

$$
\overline{\mathbf{w}}^{(j)}=\left[\bar{w}_{1}=0, \ldots, \bar{w}_{j}=1, \ldots, \bar{w}_{N}=0\right]=\delta(j),
$$

and we denote also

$$
\overline{\mathbf{w}}^{*}=\left[\frac{1}{N}, \ldots, \frac{1}{N}\right] .
$$

Generalized ESS: strictly required conditions

C1. Symmetry: E_{N} must be invariant under any permutation of the weights, i.e.,

$$
\begin{equation*}
E_{N}\left(\bar{w}_{1}, \bar{w}_{2}, \ldots, \bar{w}_{N}\right)=E_{N}\left(\bar{w}_{j_{1}}, \bar{w}_{j_{2}}, \ldots, \bar{w}_{j_{N}}\right), \tag{11}
\end{equation*}
$$

for any possible set of indices $\left\{j_{1}, \ldots, j_{N}\right\}=\{1, \ldots, N\}$.
C2. Maximum condition: A maximum is reached at $\overline{\mathbf{w}}^{*}$ in Eq. (11) and has value N, i.e.,

$$
\begin{equation*}
E_{N}\left(\overline{\mathbf{w}}^{*}\right)=N \geq E_{N}(\overline{\mathbf{w}}) \tag{12}
\end{equation*}
$$

C3. Minimum condition: the minimum value is 1 and it is reached (at least) at the vertices $\overline{\mathbf{w}}^{(j)}$ of the unit simplex in Eq. (11),

$$
\begin{equation*}
E_{N}\left(\overline{\mathbf{w}}^{(j)}\right)=1 \leq E_{N}(\overline{\mathbf{w}}) \tag{13}
\end{equation*}
$$

for all $j \in\{1, \ldots, N\}$.

GEneralized ESS: welcome conditions (1)

C 4 . Unicity of extreme values: The maximum at $\overline{\mathbf{w}}^{*}$ is unique, i.e., there are not other local maxima, and the the minimum value 1 is reached only at the vertices $\overline{\mathbf{w}}^{(j)}$, for all $j \in\{1, \ldots, N\}$.

GEneralized ESS: welcome conditions (2)

C5. Stability-Invariance of the rate $\frac{E_{N}(\bar{w})}{N}$: Consider the vectors $\overline{\mathbf{w}}=\left[\bar{w}_{1}, \ldots, \bar{w}_{N}\right] \in \mathbb{R}^{N}$ and a vector

$$
\begin{equation*}
\overline{\mathbf{v}}=\left[\bar{v}_{1}, \ldots, \bar{v}_{M N}\right] \in \mathbb{R}^{M N}, \quad M \geq 1, \tag{14}
\end{equation*}
$$

obtained repeating and scaling by $\frac{1}{M}$ the entries of $\overline{\mathbf{w}}$, i.e.,

$$
\begin{equation*}
\overline{\mathbf{v}}=\frac{1}{M}[\underbrace{\overline{\mathbf{w}}, \ldots, \overline{\mathbf{w}}}_{M-\text { times }}], \tag{15}
\end{equation*}
$$

i.e., $\bar{v}_{1}=\frac{1}{M} \bar{w}_{1}, \ldots, \bar{v}_{N}=\frac{1}{M} \bar{w}_{N}$ and $\bar{v}_{N+1}=\frac{1}{M} \bar{w}_{1}, \ldots, \bar{v}_{M N}=\frac{1}{M} \bar{w}_{N}$. Then, the condition is given as

$$
\begin{equation*}
\frac{E_{N}(\overline{\mathbf{w}})}{N}=\frac{E_{M N}(\overline{\mathbf{v}})}{M N} \Longrightarrow E_{N}(\overline{\mathbf{w}})=\frac{1}{M} E_{M N}(\overline{\mathbf{v}}), \tag{16}
\end{equation*}
$$

for all $M \in \mathbb{N}^{+}$.

Explanation of C5

- Following the optimistic approach, we would like, for instance,

$$
\overline{\mathbf{w}}=\left[0,0, \frac{1}{2}, \frac{1}{2}\right] \rightarrow E_{4}(\overline{\mathbf{w}})=2
$$

and

$$
\overline{\mathbf{v}}=\frac{1}{2}[\overline{\mathbf{w}}, \overline{\mathbf{w}}]=\left[0,0, \frac{1}{4}, \frac{1}{4}, 0,0, \frac{1}{4}, \frac{1}{4}\right] \rightarrow E_{8}(\overline{\mathbf{v}})=4 .
$$

i.e.,

$$
E_{4}(\overline{\mathbf{w}})=\frac{1}{2} E_{8}(\overline{\mathbf{v}}) .
$$

G-ESS: CLASSIFICATIONS

Table: Classification of G-ESS depending of the satisfied conditions.

Class of G-ESS	C1	C2	C3	C4	C5
Degenerate (D)	Yes	Yes	Yes	No	No
Proper (P)	Yes	Yes	Yes	Yes	No
Degenerate and Stable (DS)	Yes	Yes	Yes	No	Yes
Proper and Stable (PS)	Yes	Yes	Yes	Yes	Yes

G-ESS: Examples (1)

- $P_{N}^{(2)}$ and $D_{N}^{(\infty)}$ are both of class PS, proper and stable.
- $V_{N}^{(0)}(\overline{\mathbf{w}})=N-N_{Z} ; N_{Z}$ is the number of zeros, belongs to the class DS, degenerate and stable.
- Let us denote the harmonic mean of the normalized weights as

$$
\operatorname{HarM}(\overline{\mathbf{w}})=\frac{1}{\sum_{n=1}^{N} \frac{1}{\bar{w}_{n}}} .
$$

The following functions, involving the harmonic mean,

$$
\begin{aligned}
& A_{1, N}(\overline{\mathbf{w}})=\frac{1}{(1-N) \operatorname{HarM}(\overline{\mathbf{w}})+1} \\
& A_{2, N}(\overline{\mathbf{w}})=\left(N^{2}-N\right) \operatorname{HarM}(\overline{\mathbf{w}})+1
\end{aligned}
$$

are both degenerate G-ESS functions.

G-ESS: Examples (2)

They are stable:

- Perplexity [Cappe08]:

$$
\operatorname{Per}_{N}(\overline{\mathbf{w}})=2^{H(\overline{\mathbf{w}})}, \quad \text { with } \quad H(\overline{\mathbf{w}})=-\sum_{n=1}^{N} \bar{w}_{n} \log _{2}\left(\bar{w}_{n}\right) .
$$

- using Gini coefficient $G(\bar{w})$:

$$
\operatorname{Gin}_{N}(\overline{\mathbf{w}})=-N G(\overline{\mathbf{w}})+N .
$$

- Threshold ESS (degenerate):

$$
\operatorname{N-Plus}_{N}(\overline{\mathbf{w}})=N^{+}
$$

where $N^{+}=$Cardinality $\left\{\bar{w}_{n} \geq \frac{1}{N}, \quad n=1, \ldots, N\right\}$.

Build G-ESS families

Given a non-linear transformation of the weights $f(\overline{\mathbf{w}})$
$f(\overline{\mathbf{w}}): \mathbb{R}^{N} \rightarrow \mathbb{R}$, which satisfies the following properties:

1. $f(\overline{\mathbf{W}})$ is a quasi-concave or a quasi-convex function, with a minimum or a maximum (respectively) at $\overline{\mathbf{w}}^{*}=\left[\frac{1}{N}, \ldots, \frac{1}{N}\right]$.
2. $f(\overline{\mathbf{w}})$ is symmetric in the sense of Eq. (11).
3. Considering the vertices of the unit simplex $\overline{\mathbf{w}}^{(i)}=\delta(i)$ in Eq. (B.2), then we also assume $f\left(\overline{\mathbf{w}}^{(i)}\right)=c$, where $c \in \mathbb{R}$ is a constant value, the same for all $i=1, \ldots, N$.

We define the G-ESS families of type:

$$
\begin{aligned}
& E_{N}(\overline{\mathbf{w}})=\frac{1}{a f(\overline{\mathbf{w}})+b}, \text { or } E_{N}(\overline{\mathbf{w}})=a f(\overline{\mathbf{w}})+b,
\end{aligned}
$$

where we tune a and b in order to fulfill the strictly-required conditions (at least).

Build G-ESS families

We try to solve the linear $\left(f\left(\overline{\mathbf{w}}^{*}\right)\right.$ and $f\left(\overline{\mathbf{w}}^{(i)}\right)$ are given $)$ systems

$$
\begin{aligned}
& \left\{\begin{array}{l}
a f\left(\overline{\mathbf{w}}^{*}\right)+b=\frac{1}{N}, \\
a f\left(\overline{\mathbf{w}}^{(i)}\right)+b=1,
\end{array}\right. \\
& \text { or } \\
& \left\{\begin{array}{l}
a f\left(\overline{\mathbf{w}}^{*}\right)+b=N, \\
a f\left(\overline{\mathbf{w}}^{(i)}\right)+b=1, \quad \forall i \in\{1, \ldots, N\},
\end{array}\right.
\end{aligned}
$$

Four G-ESS FAmilies

TABLE: Summary of the G-ESS families (in general, proper, with exception...).

$P_{N}^{(r)}(\overline{\mathbf{w}})$	$D_{N}^{(r)}(\overline{\mathbf{w}})$	$V_{N}^{(r)}(\overline{\mathbf{w}})$	$S_{N}^{(r)}(\overline{\mathbf{w}})$
$\frac{1}{a_{r} \sum_{n=1}^{N}\left(\bar{w}_{n}\right)^{r}+b_{r}}$	$\frac{1}{a_{r}\left[\sum_{n=1}^{N}\left(\bar{w}_{n}\right)^{r}\right]^{\frac{1}{r}}+b_{r}}$	$a_{r} \sum_{n=1}^{N}\left(\bar{w}_{n}\right)^{r}+b_{r}$	$a_{r}\left[\sum_{n=1}^{N}\left(\bar{w}_{n}\right)^{r}\right]^{\frac{1}{r}}+b_{r}$
$a_{r}=\frac{1-N}{N^{(2-r)}-N}$	$a_{r}=\frac{N-1}{N-N^{\frac{1}{r}}}$	$a_{r}=\frac{N^{r-1}(N-1)}{1-N^{r-1}}$	$a_{r}=\frac{N-1}{N^{\frac{1-r}{r}}-1}$
$b_{r}=\frac{N^{(2-r)}-1}{N^{(2-r)}-N}$	$b_{r}=\frac{1-N^{\frac{1}{r}}}{N-N^{\frac{1}{r}}}$	$b_{r}=\frac{N^{r}-1}{N^{r-1}-1}$	$b_{r}=\frac{N^{\frac{1-r}{r}}-N}{N^{\frac{1-r}{r}}-1}$

They satisfy always C1, C2, C3, often C4 (not always) and sometimes C5.

Special cases of $P_{N}^{(r)}(\overline{\mathbf{w}})$

Par.:	$\mathbf{r} \rightarrow \mathbf{0}$	$\mathbf{r} \rightarrow \mathbf{1}$	$\mathbf{r}=\mathbf{2}$	$\mathbf{r} \rightarrow \infty$
$P_{N}^{(r)}(\overline{\mathbf{w}})=$	$\frac{N}{N_{Z}+1}$	$\frac{-N \log _{2}(N)}{-N \log _{2}(N)+(N-1) H(\overline{\mathbf{w}})}$	$\frac{\sum_{n=1}^{N} \bar{w}_{n}^{2}}{1}$	$\left\{\begin{array}{c}N, \quad \text { if } \overline{\mathbf{w}} \neq \overline{\mathbf{w}}^{(i)} \\ 1, \quad \text { if } \overline{\mathbf{w}}=\overline{\mathbf{w}}^{(i)}\end{array}\right.$
Com.:	N_{Z} contained in $\overline{\mathbf{w}}$ Degenerate	Discrete entropy $H(\overline{\mathbf{w}})=-\sum_{n=1}^{N} \bar{w}_{n} \log _{2}\left(\bar{w}_{n}\right)$ Proper	$P_{N}^{(2)}$ Proper-Stable	Degenerate

$\operatorname{Special} \operatorname{case} P_{N}^{(1)}(\overline{\mathbf{w}})$

- $a_{r} \rightarrow \pm \infty, b_{r} \rightarrow \mp \infty,\left(\bar{w}_{n}\right)^{r} \rightarrow 1$ when $r \rightarrow 1$, we have an indeterminate form of type $\frac{0}{0}$ in limit

$$
\lim _{r \rightarrow 1} P_{N}^{(r)}(\overline{\mathbf{w}})=\lim _{r \rightarrow 1} \frac{N^{(2-r)}-N}{(1-N) \sum_{n=1}^{N}\left(\bar{w}_{n}\right)^{r}+N^{(2-r)}-1}=\frac{0}{0}
$$

- Applying the L'Hôpital's rule,

$$
\begin{align*}
P_{N}^{(1)}(\overline{\mathbf{w}}) & =\lim _{r \rightarrow 1} \frac{-N^{(2-r)} \log (N)}{-N^{(2-r)} \log (N)-(N-1) \sum_{n=1}^{N} \bar{w}_{n}^{r} \log \left(\bar{w}_{n}\right)}, \\
& =\frac{-N \log (N)}{-N \log (N)-(N-1) \sum_{n=1}^{N} \bar{w}_{n} \log \left(\bar{w}_{n}\right)}, \\
& =\frac{-N \frac{\log _{2}(N)}{\log _{2} e}}{-N \frac{\log _{2}(N)}{\log _{2} e}-(N-1) \sum_{n=1}^{N} \bar{w}_{n} \frac{\log _{2}\left(\bar{w}_{n}\right)}{\log _{2} e}}, \\
& =\frac{-N \log _{2}(N)}{-N \log _{2}(N)+(N-1) H(\overline{\mathbf{w}})}, \tag{17}
\end{align*}
$$

where we have denoted as $H(\overline{\mathbf{w}})=-\sum_{n=1}^{N} \bar{w}_{n} \log _{2}\left(\bar{w}_{n}\right)$ the discrete entropy of the pmf $\bar{w}_{n}, n=1, \ldots, N$.

Special cases of $D_{N}^{(r)}(\overline{\mathbf{w}})$

Parameter:	$\mathbf{r} \rightarrow \mathbf{0}$	$\mathbf{r} \rightarrow \mathbf{1}$	$\mathbf{r} \rightarrow \infty$		
$D_{N}^{(r)}(\overline{\mathbf{w}})=$	$\frac{1}{(1-N) G e o M(\overline{\mathbf{w}})+1}$	$\frac{-N \log _{2}(N)}{-N \log _{2}(N)+(N-1) H(\overline{\mathbf{w}})}$	$\frac{1}{\max \left[\bar{w}_{1}, \ldots, \bar{w}_{N}\right]}$		
Comments:	$\left.\begin{array}{c}\text { Geometric Mean } \\ G e o M(\overline{\mathbf{w}})=\left[\prod_{n=1}^{N}\right. \\ \text { Degenerate }\end{array} \bar{w}_{n}\right]^{1 / N}$	$H(\overline{\mathbf{w}})=-\sum_{n=1}^{N} \bar{w}_{n} \log _{2}\left(\bar{w}_{n}\right)$	$D_{N}^{(\infty)}$		
Proper				\quad Proper-Stable	Discrete entropy
:---:					

Special cases of $V_{N}^{(r)}(\overline{\mathbf{w}})$

Parameter:	$\mathbf{r} \rightarrow \mathbf{0}$	$\mathbf{r} \rightarrow \mathbf{1}$	$\mathbf{r} \rightarrow \infty$
$V_{N}^{(r)}(\overline{\mathbf{w}})=$	$N-N_{Z}$	$\frac{N-1}{\log _{2}(N)} H(\overline{\mathbf{w}})+1$	$\left\{\begin{array}{cc\|}N & \text { if } \overline{\mathbf{w}} \neq \overline{\mathbf{w}}^{(i)} \\ 1, & \text { if } \overline{\mathbf{w}}=\overline{\mathbf{w}}^{(i)} .\end{array}\right.$
Comments:	N_{Z} number of zeros in $\overline{\mathbf{w}}$ Degenerate-Stable	Discrete Entropy $=-\sum_{n=1}^{N} \bar{w}_{n} \log _{2}\left(\bar{w}_{n}\right)$	Degenerate
Proper			

Special cases of $S_{N}^{(r)}(\overline{\mathbf{w}})$

Par.:	$\mathbf{r} \rightarrow 0$	$r=\frac{1}{2}$	$r \rightarrow 1$	$\mathbf{r} \rightarrow \infty$
$S_{N}^{(r)}(\overline{\mathbf{w}})$	$\left(N^{2}-N\right) \operatorname{GeoM}(\overline{\mathbf{w}})+1$	$\left(\sum_{n=1}^{N} \sqrt{W_{n}}\right)^{2}$	$\frac{N-1}{\log _{2}(N)} H(\overline{\mathbf{w}})+1$	$N+1-N \max \left[\bar{w}_{1}, \ldots, \bar{w}_{N}\right]$
Com.:	Geometric Mean $\operatorname{GeoM}(\overline{\mathbf{w}})=\left[\prod_{n=1}^{N} \bar{w}_{n}\right]^{1 / N}$ Degenerate	Prop-Stable	Discrete Entropy $H(\overline{\mathbf{w}})$ Proper	Proper

Summary

TABLE: Stable G-ESS functions and related inequalities.

Threshold	GINI	$D_{N}^{(\infty)}(\overline{\mathbf{w}})$	$P_{N}^{(2)}(\overline{\mathbf{w}})$	Perplex	$S_{N}^{\left(\frac{1}{2}\right)}(\overline{\mathbf{w}})$	$V_{N}^{(0)}(\overline{\mathbf{w}})$
N^{+}	$-N G(\bar{w})+N$	$\frac{1}{\max \left[\bar{w}_{1}, \ldots, \bar{L}_{N}\right]}$	$\frac{1}{\sum_{n=1}^{N} \bar{w}_{n}^{2}}$	$2^{H(\bar{w})}$	$\left(\sum_{n=1}^{N} \sqrt{\bar{w}_{n}}\right)^{2}$	$N-N_{z}$
DS	PS	PS	PS	PS	PS	DS
all-C4	all	all	all	all	all	all-C4
$D_{N}^{(\infty)}(\overline{\mathbf{w}}) \leq P_{N}^{(2)}(\overline{\mathbf{w}}) \leq S_{N}^{\left(\frac{1}{2}\right)}(\overline{\mathbf{w}}) \leq V_{N}^{(0)}(\overline{\mathbf{w}}), \quad \forall \overline{\mathbf{w}} \in \mathcal{S}_{N}$						

Huggins-Roy's family

All proper and stable!! for $\beta>0$ ($\beta=0$ degenerate $)$
The Huggins-Roy's family introduced in [13] is defined as

$$
\begin{aligned}
H_{N}^{(\beta)}(\overline{\mathbf{w}}) & =\left(\frac{1}{\sum_{n=1}^{N} \bar{w}_{n}^{\beta}}\right)^{\frac{1}{\beta-1}} \\
& =\left(\sum_{n=1}^{N} \bar{w}_{n}^{\beta}\right)^{\frac{1}{1-\beta}}, \quad \beta \geq 0 .
\end{aligned}
$$

Table 1 Special cases of G-ESS functions contained in the Huggins-Roy's family.

$\beta=0$	$\beta=1 / 2$	$\beta=1$	$\beta=2$	$\beta=\infty$
$N-N_{Z}$	$\left(\sum_{n=1}^{N} \sqrt{\bar{w}_{n}}\right)^{2}$	$\exp \left(-\sum_{n=}^{N} \bar{w}_{n} \log \bar{w}_{n}\right)$	$\frac{1}{\sum_{n=1}^{N} \bar{w}_{n}^{2}}$	$\frac{1}{\max \left[\bar{w}_{1}, \ldots, \bar{w}_{N}\right]}$
where N_{Z} is the number of zeros in $\overline{\mathbf{w}}$		(perplexity)	(standard approximation)	

Relationship with the Rényi entropy

The Rényi entropy [6] is defined as

$$
R_{N}^{(\beta)}(\overline{\mathbf{w}})=\frac{1}{1-\beta} \log \left[\sum_{n=}^{N} \bar{w}_{n}^{\beta}\right], \quad \beta \geq 0
$$

Then, it is straightforward to note that

$$
H_{N}^{(\beta)}(\overline{\mathbf{w}})=\exp \left(R_{N}^{(\beta)}(\overline{\mathbf{w}})\right)
$$

The Huggins-Roy's family contains the diversity indices based on the Rényi entropy.

Numerical Simulations / Considerations

Drawing $\overline{\mathbf{w}}$ uniformly in the unit simplex:

(a) $N=50$

(c) $N=1000$

(b) $N=50$

(d) $N=1000$

Numerical Simulations/Considerations

- These values (the statistics of these histograms) can be useful in the adaptive resampling applications:

$$
\widehat{E S S}(\overline{\mathbf{w}}) \leq \epsilon N,
$$

$$
\text { with } 0<\epsilon<1
$$

- Perhaps, these histograms explain the value $\epsilon=\frac{1}{2}$, suggested in [Doucet08; page15] for $P_{N}^{(2)}$.
- We compare $P_{N}^{(2)}$ and $D_{N}^{(\infty)}$ in a "right way" within a particle filter (in that example $D_{N}^{(\infty)}$ works better)

Numerical Simulations

$\bar{\pi}(x)=\mathcal{N}(x ; 0,1)$,
and also a Gaussian proposal pdf,
$q(x)=\mathcal{N}\left(x ; \mu_{p}, \sigma_{p}^{2}\right)$,
with mean μ_{p} and variance $\sigma_{p}{ }^{2}$. Furthermore, we consider different experiment settings:

S1 In this scenario, we set $\sigma_{p}=1$ and vary $\mu_{p} \in[0,2]$. Clearly, for $\mu_{p}=0$ we have the ideal Monte Carlo case, $q(x) \equiv \bar{\pi}(x)$. As μ_{p} increases, the proposal becomes more different from $\bar{\pi}$. We consider the estimation of the expected value of the random variable $X \sim \bar{\pi}(x)$, i.e., we set $h(x)=x$ in the integral of Eq. (1).
S2 In this case, we set $\mu_{p}=1$ and consider $\sigma_{p} \in[0.23,4]$. We set $h(x)=x$.
S3 We fix $\sigma_{p}=1$ and $\mu_{p} \in\{0.3,0.5,1,1.5\}$ and vary the number of samples N. We consider again $h(x)=x$.

Numerical Simulations

Fig. 3. ESS rates corresponding to ESSm(h) (solid line), ESSess (h) (dashed line; shown only in (a)-(c)), $P_{N}^{(2)}$ (dircles), $D_{N}^{((\infty)}$ (squares), Giniv (stars), $\mathcal{S}_{N}^{(1 / 2)}$ (triangles up), Qv (xmarks), Pemp (triangles down).

Numerical Simulations

(a) $\mu_{p}=0.3$ (and $\sigma_{p}=1$).

(c) $\mu_{p}=1$ (and $\left.\sigma_{p}=1\right)$.

(b) $\mu_{p}=0.5$ (and $\sigma_{p}=1$).

(d) $\mu_{p}=1.5$ (and $\sigma_{p}=1$).

Hg. 4. [Setting S3] ESS rates as function of N, corresponding to the theoretical ESS, i.e., ESS wor h) (solid line), and the G-ESS functions: $p_{N}^{(2)}$ (circles), $D\left(\mathcal{N}_{N}^{(0)}\right.$ (squares), Gini \mathcal{N}_{N} (stars), $S_{N}^{(1 / 2)}$ (triangles up), ON_{N} (x-marks), PenN (triangles down).

Numerical Simulations

ESS/N

Figure 3 ESS rates (i.e., the ratio of ESS values over N) corresponding to the theoretical ESS value (solid line), $H_{N}^{(2)}$ (circles) and $H_{N}^{(\infty)}$ (squares). We set $N=$ 1000.

Numerical Simulations

ESS/N

Figure 4 ESS rates (i.e., the ratio of ESS values over N) corresponding to the theoretical ESS value (solid line), $H_{N}^{(4)}$ (dashed line) and the linear combination E_{N} in Eq. (5.4)-(5.5) (squares). We set $N=1000$. The approximation provided by $H_{N}^{(4)}$ is virtually perfect for $\mu_{p} \leq 1$.

Some references

[Kong92]: A. Kong. A note on importance sampling using standardized weights. University of Chicago, Dept. of Statistics, Tech. Rep., vol. 348, 1992. [Robert10]: C. P. Robert and G. Casella. Introducing Monte Carlo Methods with R. Springer, 2010.
[Liu01]: J. S. Liu, R. Chen, and T. Logvinenko. A Theoretical Framework for Sequential Importance Sampling with Resampling. CHAPTER 11: Sequential Monte Carlo Methods in Practice, Springer, New York, 2001. [Cappe08]: O. Cappé, R. Douc, A. Guillin, J. M. Marin, and C. P. Robert. Population Monte Carlo. Statistics and Computing, 18:447-459, 2008.
[Cappe04]: O. Cappé, A. Guillin, J. M. Marin, and C. P. Robert. Population Monte Carlo. Journal of Computational and Graphical Statistics, 13 (4):907-929, 2004.
[Doucet01]: A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte Carlo Methods in Practice. Springer, New York, 2001.
[Doucet08]: A. Doucet, A. M. Johansen. A Tutorial on Particle Filtering and Smoothing: Fifteen years later. Tec. Rep., 2008.

