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The Magic of the L'Hospital's Rule...
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APPROXIMATING INTEGRALS

» In Bayesian inference, we often need to compute efficiently

integrals involving the (posterior) target pdf 7(x) = %ﬂ(x),

I(h) = /Xh(x / (1)

» We approximate /(h) by Monte Carlo methods.



MONTE CARLO - IMPORTANCE SAMPLING (IS)

» STANDARD-"“IDEAL" CASE: Draw x, ~ w(x), n=1,..., N,
and

Nthn —

N—>oo

» In general, it is not possible to draw from 7(x).
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MONTE CARLO - IMPORTANCE SAMPLING (IS)

» STANDARD-"“IDEAL" CASE: Draw x, ~ w(x), n=1,..., N,
and

Nthn Njo)o

» In general, it is not possible to draw from 7(x).
» IMPORTANCE SAMPLING (IS): Draw x, ~ g(x),

n=1,...,N,

N N

I(h) = ;v'v,,h(x,,) —
where (%) ) w
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EFFECTIVE SAMPLE SIZE (ESS)

» Generally, using IS, we lose some efficiency w.r.t. the standard
MC case.

» From a theoretical and practical point of view, it is important
to measure this loss of efficiency.

» Statistically speaking: do my N weighted samples correspond
to E samples (with E < N) independently drawn from 77

» A possible math-definition of the Effective Sample Size (ESS)

IS:

E = ESS = N‘V’::’Tg} (2)

See [Kong92].
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EFFECTIVE SAMPLE SIZE (ESS) - DEFINITION
DRAWBACKS/OBSERVATIONS

» The definition depends on h(x):

var[I(h)]

ESS(h) = N——To 21,
) varg[/(h)]

» A more complete definition should be:

_ NMSEW[I] Y var[/]

ESS - i
MSEg[l]  MSE[/]
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EFFECTIVE SAMPLE SIZE IN PRACTICE

» However, the theoretical formula is “useless” from a practical
point of view.

Ess — Yol Ko | pee
varg[/

» Try to find something that we can easily compute.



EFFECTIVE SAMPLE SIZE IN PRACTICE

» After several approximations and assumptions, one can obtain

— 1
> =1 (Wn)?

where W = [y, ..., wy] is the vector of normalized weights.
» Several methods (particle filters, population Monte Carlo,

adaptive importance sampling schemes) use this formula

above.
» It is possible to show that

1< PJ(W) < N. (5)

See [Kong92,Robert10,Liu01].
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WEAKNESSES OF P,(Vz) (W)

» Due to the several approximations and strong assumptions:

loss of information
wy = 2.01

wy =1

w3 = 0.9 Wy = 0.51 Wy = 0.51
@ = 0.25 ——) w; =0.25 I ws = 0.23
< g = 0.23T T x n
X3 X1 Xo X3 X1 X2

> P,(Vz) does not depend on h(x).

> P,(V2) does not depend on the samples x,,.

» One assumption is that x, ~ g(x) for all n, but in different

methods, we have x; ~ gi1(x), ..., Xy ~ gn(x).
> By definition of ESS = NY2=ll '\ve can have
var,[l]

0<ESS<B, B>N.



STRENGTHS/REASONS TO USE P,(Vz)(v‘v)

» Why is it used? It works reasonable well in different
applications: people like it.

» Using only the info of the normalized weights w,, the
inequalities 1 < p )( ) < N are reasonable. It applies an
optimistic approach

— 1 1 .
W =10,..., 1 ,....0 = PP (&) = 1. (7

i
» easy to be used, for adaptive resampling:
PO(W) < eN

with 0 < e < 1.

9
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ALTERNATIVE DERIVATION /MOTIVATION OF P,(VQ)(W)

> Alternative derivation based on the need (or not) of resampling.

» Let us consider the Euclidean distance L, between these two the discrete
uniform pmf U{1,2,..., N} and the pmf w,, i.e,

L xw)

1 2 &
+N(N2)N;wn

N
= (Z#) %
" N
n=1
1 1
= " (8)
PYw) N

» Maximizing P,(Vz) corresponds to minimize L.
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SO FAR: LITTLE SUMMARY

> So far: ESS = P,(V2)(\Kl) is a “bad” approximation of the
theoretical definition.

» But the people like and use it; the main reason: maximizing
P,(Vz) corresponds to minimize L,.

» Discrepancy/distance between pmf w and uniform pmf 1/N.

» Are there alternatives of the same type?



SO FAR: LITTLE SUMMARY

> So far: ESS = P,(V2)(\Xl) is a “bad” approximation of the
theoretical definition.

» But the people like and use it; the main reason: maximizing
P,(Vz) corresponds to minimize L,.

» Discrepancy/distance between pmf w and uniform pmf 1/N.

» Are there alternatives of the same type?

» (PS: the formula Pl(vz)(v'v) is also known as Kish's Effective
Sample Size and is used in other branches of statistics that
involve weighted samples)

> (PS2: for correlated samples, we have another formula)



ALTERNATIVES: ESS APPROX BASED ON
DISCREPANCY

» Other authors also propose the perplexity measure based on
the discrete entropy [Cappe08].
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ALTERNATIVES: ESS APPROX BASED ON
DISCREPANCY

» Other authors also propose the perplexity measure based on
the discrete entropy [Cappe08].

» We can also consider

1
—_ — Y
max [wy, ..., wy]

ESS = D (w) =

> Note that 1 < D{™®(w) < N.
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GENERALIZED ESS FUNCTIONS

» Generalized ESS (G-ESS) function:
En(w) = Ey(wa, ..., wy) : Sy — [1, N], (10)
where Sy C RN represents the unit simplex, namely,
W4+ Wo + ...+ wy =1
Recall, we denote the vertices of the unit simplex as
wh) = [ =0,...,w=1,...,wn =0] = (),

and we denote also

R .
=lv o wl



GENERALIZED ESS: strictly required CONDITIONS

Cl.

C2.

C3.

Symmetry: Ey must be invariant under any permutation of
the weights, i.e.,

EN("_V17‘7V27---7‘7VN):EN(V_VJ'M‘/_VJ'W""‘/_VJN)? (11)

for any possible set of indices {j1,...,jnv} ={1,..., N}.

Maximum condition: A maximum is reached at w* in Eq.
(11) and has value N, i.e.,

En (W*) = N > Ep(W). (12)

Minimum condition: the minimum value is 1 and it is
reached (at least) at the vertices wU) of the unit simplex in
Eq. (11),

En(wY)) =1 < Ey(w). (13)

forall j € {1,...,N}.
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GENERALIZED ESS: welcome CONDITIONS (1)

C4. Unicity of extreme values: The maximum at w* is unique,

i.e., there are not other local maxima, and the the minimum
value 1 is reached only at the vertices w!), for all
je{1,....N}.
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GENERALIZED ESS: welcome CONDITIONS (2)

C5. Stability-Invariance of the rate E"’,\(,‘K'): Consider the vectors
W= [, ..., wn] € RY and a vector
V=[n,...,om] €eR", M>1, (14)

obtained repeating and scaling by % the entries of w, i.e.,

! (15)
M —times
i.e., Vl = %Wl,. vy VN = ﬁv‘v,v and VN+1 = %_1, ey VMN = %V_VN. Then,
the condition is given as
En(w) Enn (V) _ 1 _
—_— = 7 E, = —E 1
N MN — N(W) M MN(V)7 ( 6)

for all M € N*.
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EXPLANATION OF C5

» Following the optimistic approach, we would like, for instance,
11
W = |:0,0, 5, 2:| — E4(\xl) == 2,

and
11,11

e 4] — E(V) = 4.



G-ESS: CLASSIFICATIONS

TABLE: Classification of G-ESS depending of the satisfied conditions.

] Class of G-ESS [C1|C2[C3[C4|C5]|
Degenerate (D) Yes | Yes | Yes | No | No
Proper (P) Yes | Yes | Yes | Yes | No

Degenerate and Stable (DS) | Yes | Yes | Yes | No | Yes
Proper and Stable (PS) | Yes | Yes | Yes | Yes | Yes




G-ESS: EXAMPLES (1)

> P,(Vz) and D,(VOO) are both of class PS, proper and stable.

> V,S,O)(v'v) = N — Nz; Nz is the number of zeros, belongs to the
class DS, degenerate and stable.

» Let us denote the harmonic mean of the normalized weights as

_ 1
HarM(W) = W
n=1 wy,

The following functions, involving the harmonic mean,

Aun(®) = G= )HalrM(

) +
Ayn(W) = (N*—N)Ha (W)

are both degenerate G-ESS functions.
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G-ESS: EXAMPLES (2)

They are stable:
» Perplexity [Cappe08]:

N
Pery (W) = 2M%)with  H(W) = = W, logy ().
n=1

» using Gini coefficient G(w):
Giny(w) = —NG(w) + N.
» Threshold ESS (degenerate):
N-Plusy(w) = N,

where N* = Cardinality{w, > &, n=1,...,N}.
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BuiLp G-ESS FAMILIES

Given a non-linear transformation of the weights f(w)

fow): RN = R, which satisfies the following properties:

1. f(w) is a quasi-concave or a quasi-convex function, with a
minimum or a maximum (respectively) at w* = % e

2. f(W) is symmetric in the sense of Eq. (11).

3. Considering the vertices of the unit simplex w® = (i) in Eq.
(B.2), then we also assume

N

fa®=c,

where ¢ € R is a constant value, the same for all i=1, ..., N.

We define the G-ESS families of type:

I
, or EyW)=afWw) + b, :

I
where we tune a and b in order to fulfill the strictly-required
conditions (at least).



BuiLp G-ESS FAMILIES

We try to solve the linear (f(w*) and f(w(?)) are given) systems
1

Nl

afw? +b=1, Vie{l, .., N}

af(w*) + b =

or

af(w*) + b =N,
afw? +b=1, Vvie{l,.., N}



Four G-ESS FAMILIES

TABLE: Summary of the G-ESS families (in general, proper, with
exception...).

|

PY(w) |

Dy (W)

|

vy (w)

|

Sy (w)

|

1
ar SN (W) +br

1
ar [22’:1(%)'] % +br

ar Yay (W) + br

r

a0 [0 @] b

— _1-N = N=t N TYN-1 = _N-
ar = NC=N_pN ar NfN% ar = 1_[\(Ir—1 ) ar Nlj' 1
b, — NC@-r_q b, — 1-NT b o— N-1 b — N
= — r = T r = Nr—1_ r = T1=r
" NETI-N N—N* Nl N T -1
They satisfy always C1, C2, C3, often C4 (not always) and

sometimes C5.



SPECIAL CASES OF P

(f)(w)

[ Par.: r—0 r—1 r=2 r— oo |
_ N — Nlogy(N) 1 N, ifw#£wD,
P (w) Ny 1 —NTogo(N) - (N=T) (&) Va2 { 1, ifw=w.
Nz Discrete entropy p@
Com.: [contained in w|,  _ N - _ N D
H(W) = =3, Wy log, (W) Proper-Stable egenerate
Degenerate P
roper




SPECIAL CASE P,(Vl)(vv)

» a3, — to00, by — Foo, (w,)" — 1 when r — 1, we have an indeterminate
form of type % in limit
(2-n _
lim P (W) = lim N N _0
r—1 —1(1=N)SN . (@) + NC=D — 1 0

» Applying the L'Hépital’s rule,

m —NC= log(N)
r—1 N9 log(N) — (N — 1) "N &} log(w,)’
— Nlog(N)

—Nlog(N) — (N —1) Zn 1 Wn Iog(w,,)
_N|°g2(N)

log; e
logy (N N _  logy (W
—NSRE (N 1) Y, )
_ Niogy(N) an
—Nlog,(N) + (N — 1)H(w)

PV(W) =

)

where we have denoted as H(W) = — > @, log,(,) the discrete
entropy of the pmf w,, n=1,... , N.
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SPECIAL CASES OF Dy

(r)

(W)

[ Parameter: | r—0 r—1 r— oo
_ _r — N logy(N) 1
Dy (w) = (1—N)GeoM(@) 11 oz, (N)+ (N—T)F(®) max[wr - W]
Geometric Mean Discrete entropy
_ N - 1/N _ N - _ D(OC)
Comments: | GeoM(w) = [ =1 W,,] H(W) = =3, Wy logy(Wn) N
Degenerate Proper Proper-Stable




SPECIAL CASES OF V(W)

[Parameter: | r—0 r—1 [ r — oo |
ifw 2w
(r) (=) — _ N—1 gy N ifw#wl)]
Vi (W) = NN @+ {0
Discrete Entropy
Comments:|Nz number of zeros in W|H(W) = — S |, log, () Degenerate
Degenerate-Stable Proper
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SPECIAL CASES OF S\ (W)

lPar.:[ r—0 r=3 r—1 [ r — 0o
2 _ _
SI(Vr)(—) (N2 — N)GeoM(w) + 1 (nyzl Wn) b’éﬁ"’(w) +1|{N+1— Nmax[a, ..., Wyl
Geometric Mean Discrete Entropy|
1/N
Com.: |GeoM(w) = [HnN:1 v_vn] / Prop-Stable H(w) Proper
Degenerate Proper
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SUMMARY

TABLE: Stable G-ESS functions and related inequalities.

T
[Threshold] — aivi | D) [PO@)|Perplex] s @) | viO(w) |
— 1 1 H(® ——\ 2
N+ _NG(W) +N max[Wy ..., wy] ZLV:1 w2 2 ®) (ZIHV:1 V Wn) N — Nz
DS PS PS PS | PS PS DS
all-C4 all all all all all all-C4

T
DO (w) < PO (w) < S (W) < VIO(w), VW € Sn
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HUGGINS-ROY’S FAMILY
All proper and stable!! for 5 > 0 (8 = 0 degenerate)

The Huggins-Roy’s family introduced in [13] is defined as

1
N — s
Zn:l U)’Bl

HY (%)

N -8
- (%) sz
n=1

Table 1 Special cases of G-ESS functions contained in the Huggins-Roy’s family.

| B=0 | B=1/2 | B=1 | B=2 |

F=c

1

N-Nz | (SX, \/@—n)Q exp (- SN wnlogun) | wxia
where Nz is

the number of (perplezity) (standard
zeros in w approzimation)

AAAAA
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RELATIONSHIP WITH THE RENYI ENTROPY

The Rényi entropy [6] is defined as

N
I POL N RD

Then, it is straightforward to note that

HY (%) = exp (R (W) .

The Huggins-Roy's family contains the diversity indices based on
the Rényi entropy.
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NUMERICAL SIMULATIONS/CONSIDERATIONS
Drawing w uniformly in the unit simplex:

SN

Pery /N

0 0.2 0.4 0.6 038 1 ()] 0.2 0.4 0.6 0.8
(a) N =50 (b) N =50
60 60
50 & /N
N/ 50 Qn/N
40 40 Giniy /N
30 Pv(\]2) /N 30 Pery /N
()
20 DN™/N 20
10 J 10
0 0
0 0.2 0.4 0.6 0.3 1 (] 0.2 0.4 0.6 0.8 1

(c) N = 1000 (d) N = 1000



NUMERICAL SIMULATIONS/CONSIDERATIONS

> These values (the statistics of these histograms) can be useful
in the adaptive resampling applications:

E/S\S(W) <eN,

with 0 < e < 1.

» Perhaps, these histograms explain the value ¢ = % suggested
in [Doucet08; pagel5] for P/(v2)-

» We compare P,(Vz) and D,(VOO) in a “right way” within a particle

filter (in that example D,(VOO) works better)



NUMERICAL SIMULATIONS

zX) = Nx; 0, 1), (39)
and also a Gaussian proposal pdf,
q) = N&; . 03), 40)

with mean i, and variance o,% Furthermore, we consider different
experiment settings:

$1 In this scenario, we set ¢, =1 and vary Hy € [0, 2]. Clearly, for
#, = 0 we have the ideal Monte Carlo case, qkx) = 7(x). As pp
increases, the proposal becomes more different from 7. We
consider the estimation of the expected value of the random
variable X ~ z(x), i.e., we set h(x) = x in the integral of Eq. (1).

S2 In this case, we set Hy = 1 and consider o, € [0.23, 4]. We set
h(x) = x.

S3 We fix ¢,= 1and Hy € {0.3, 0.5, 1, 1.5} and vary the number of
samples N. We consider again h(x) = x.



NUMERICAL SIMULATIONS
ESS/N ) ESS/N

095 %
0.8
0.7
0.6
05
04
0.3
0.2
0.1

(a) Setting S1 with N =5. (b) Setting S1 with N = 1000.

ESS/N ESS/N

(c) Setting S2 with N = 5. (d) Setting S2 with N = 1000.

Fig. 3. ESS rates corresponding to ESS,{ h) (solid line), ESSuess{ h) (dashed line; shown only in (a)-(c)). AP (circles). I (squares), Giniy (stars), S{'/? (triangles up), Qu (x-
marks), Pery (triangles down).




NUMERICAL SIMULATIONS

\ e
. .. 0.2 B8 -m-s-.a-g-g..a-
o Semsaggog
o 1000 2000 3000 4000 5000 00 1000 2000 3000 4000 5000
N N
(a) pp = 0.3 (and 0p = 1). (b) pp =0.5 (and op = 1).
ESS/N ESS/N
1 0.8
A
A 07
0B A A A A A A A A A 06¥
é 'i'—AVAV—AAAAAAA
SDT VIS VRSV VERE VRV VARV R L
(3 ekl BE SEE SEL EE SEE bt obb ] . 56.m =3 - - - 3 X 3
* K k K Kk Kk Kk K K 045
041l 0 o0-0 0 0 -0 0 0 o 03f * ¥ ¥ ¥ YYTIYY
02 0.2
.2 1 © 0 o
‘\- 041 © o 0 o o o
o e @--E - @--@--E-- - Py B s - - e e
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
N N
(c) pp =1 (and o = 1). (d) pp = 1.5 (and op = 1).

Rg 4. [Setting S3] ESS rates as function of N, comesponding o the theoretical ESS, i.e., ESS,o(h) (solid line), and the G-ESS functions: P (circles). Dif (squares), Giniy
(stars), S{/? (triangles up), Qu (x-marks), Pery (triangles down).
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NUMERICAL SIMULATIONS

ESS/N

Figure 3 ESS rates (i.e., the ratio of ESS values over N ) corresponding to the

theoretical ESS value (solid line), HY) (circles) and H®) (squares). We set N =
1000.
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NUMERICAL SIMULATIONS

ESS/N
: .
1 L] =
\ ___H§§
0.8 @ Lin Comb
0.6}
0.4}
0.2}
% 05 1 15 2
n

Figure 4 ESS rates (i.e., the ratio of ESS values over N ) corresponding to the
theoretical ESS value (solid line), Hl(va) (dashed line) and the linear combination
Ey in Eq. (5.4)-(5.5) (squares). We set N = 1000. The approzimation provided by
HJ(V‘) is virtually perfect for pp < 1.
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