EFFECTIVE SAMPLE SIZE FOR IMPORTANCE SAMPLING (FUNNY STORY)

L. Martino

jointly with V. Elvira

The Magic of the L'Hospital's Rule ...

イロン イヨン イヨン イヨン 三日

▶ In Bayesian inference, we often need to compute efficiently integrals involving the (posterior) target pdf $\bar{\pi}(\mathbf{x}) = \frac{1}{Z}\pi(\mathbf{x})$,

$$I(h) = \int_{\mathcal{X}} h(\mathbf{x}) \bar{\pi}(\mathbf{x}) d\mathbf{x} = \frac{1}{Z} \int_{\mathcal{X}} h(\mathbf{x}) \pi(\mathbf{x}) d\mathbf{x}, \qquad (1)$$

We approximate I(h) by Monte Carlo methods.

MONTE CARLO - IMPORTANCE SAMPLING (IS)

► STANDARD- "IDEAL" CASE: Draw $\mathbf{x}_n \sim \bar{\pi}(\mathbf{x})$, n = 1, ..., N, and

$$\widehat{I}(h) = \frac{1}{N} \sum_{n=1}^{N} h(\mathbf{x}_n) \underset{N \to \infty}{\longrightarrow} I.$$

イロン イロン イヨン イヨン 三日

3/39

• In general, it is not possible to draw from $\bar{\pi}(\mathbf{x})$.

MONTE CARLO - IMPORTANCE SAMPLING (IS)

► STANDARD- "IDEAL" CASE: Draw x_n ~ π̄(x), n = 1,..., N, and

$$\widehat{I}(h) = \frac{1}{N} \sum_{n=1}^{N} h(\mathbf{x}_n) \underset{N \to \infty}{\longrightarrow} I.$$

- In general, it is not possible to draw from $\bar{\pi}(\mathbf{x})$.
- ► IMPORTANCE SAMPLING (IS): Draw $\mathbf{x}_n \sim q(\mathbf{x})$, n = 1, ..., N,

$$\widetilde{I}(h) = \sum_{n=1}^{N} \overline{w}_n h(\mathbf{x}_n) \underset{N \to \infty}{\longrightarrow} I.$$

where

$$w_n = \frac{\pi(\mathbf{x}_n)}{q(\mathbf{x}_n)}, \qquad \bar{w}_n = \frac{w_n}{\sum_{n=1}^N w_n}.$$

<ロ > < 部 > < 書 > < 書 > < 書 > こ > < 名 < 3 / 39

EFFECTIVE SAMPLE SIZE (ESS)

- Generally, using IS, we lose some efficiency w.r.t. the standard MC case.
- From a theoretical and practical point of view, it is important to measure this loss of efficiency.
- ► Statistically speaking: do my N weighted samples correspond to E samples (with E < N) independently drawn from π?</p>
- A possible math-definition of the Effective Sample Size (ESS) is:

$$E = ESS = N \frac{\operatorname{var}_{\pi}[\widehat{I}]}{\operatorname{var}_{q}[\widetilde{I}]}.$$
 (2)

イロト 不得下 イヨト イヨト 二日

4/39

See [Kong92].

EFFECTIVE SAMPLE SIZE (ESS) - DEFINITION DRAWBACKS/OBSERVATIONS

• The definition depends on $h(\mathbf{x})$:

$$extsf{ESS}(h) = N rac{ extsf{var}_{\pi}[\widehat{I}(h)]}{ extsf{var}_{q}[\widetilde{I}(h)]}.$$

A more complete definition should be:

$$ESS = N \frac{\mathsf{MSE}_{\pi}[\widehat{I}]}{\mathsf{MSE}_{q}[\widetilde{I}]} = N \frac{\mathsf{var}_{\pi}[\widehat{I}]}{\mathsf{MSE}_{q}[\widetilde{I}]}.$$
(3)

EFFECTIVE SAMPLE SIZE IN PRACTICE

 However, the theoretical formula is "useless" from a practical point of view.

$$ESS = N \frac{\operatorname{var}_{\pi}[\widetilde{I}]}{\operatorname{var}_{q}[\widetilde{I}]} \xrightarrow{\operatorname{Kong92}} \widehat{ESS} = ?$$

Try to find something that we can easily compute.

EFFECTIVE SAMPLE SIZE IN PRACTICE

After several approximations and assumptions, one can obtain

$$ESS \approx \widehat{ESS} = P_N^{(2)}(\bar{\mathbf{w}}) = \frac{1}{\sum_{n=1}^N (\bar{w}_n)^2},$$
 (4)

where $\mathbf{\bar{w}} = [\mathbf{\bar{w}}_1, \dots, \mathbf{\bar{w}}_N]$ is the vector of normalized weights.

- Several methods (particle filters, population Monte Carlo, adaptive importance sampling schemes) use this formula above.
- It is possible to show that

$$1 \le P_N^{(2)}(\bar{\mathbf{w}}) \le N. \tag{5}$$

See [Kong92,Robert10,Liu01].

Weaknesses of $P_N^{(2)}(\bar{\mathbf{w}})$

Due to the several approximations and strong assumptions: loss of information

• $P_N^{(2)}$ does not depend on $h(\mathbf{x})$.

• $P_N^{(2)}$ does not depend on the samples \mathbf{x}_n .

- ► One assumption is that x_n ~ q(x) for all n, but in different methods, we have x₁ ~ q₁(x), ..., x_N ~ q_N(x).
- By definition of $ESS = N \frac{\operatorname{var}_{\pi}[\hat{I}]}{\operatorname{var}_{q}[\tilde{I}]}$, we can have

$$0 \leq ESS \leq B, \qquad B \geq N.$$

STRENGTHS/REASONS TO USE $P_N^{(2)}(\bar{\mathbf{w}})$

- Why is it used? It works reasonable well in different applications: people like it.
- ▶ Using only the info of the normalized weights \bar{w}_n , the inequalities $1 \le P_N^{(2)}(\bar{\mathbf{w}}) \le N$ are reasonable. It applies an optimistic approach:

$$\mathbf{\bar{w}}^* = \left[\frac{1}{N}, \dots, \frac{1}{N}\right] \Longrightarrow P_N^{(2)}(\mathbf{\bar{w}}^*) = N, \tag{6}$$

$$\bar{\mathbf{w}}^{(i)} = [0, \dots, \underbrace{1}_{i}, \dots, 0] \Longrightarrow P_N^{(2)}(\bar{\mathbf{w}}^{(i)}) = 1.$$
(7)

easy to be used, for adaptive resampling:

$$P_N^{(2)}(\mathbf{\bar{w}}) \leq \epsilon N$$

with $0 < \epsilon < 1$.

ALTERNATIVE DERIVATION/MOTIVATION OF $P_N^{(2)}(\bar{\mathbf{w}})$

- Alternative derivation based on the need (or not) of resampling.
- ▶ Let us consider the Euclidean distance L_2 between these two the discrete uniform pmf \mathcal{U} {1, 2, ..., N} and the pmf \bar{w}_n , i.e,

$$L_{2} = \sqrt{\sum_{n=1}^{N} \left(\bar{w}_{n} - \frac{1}{N}\right)^{2}}$$

$$= \sqrt{\left(\sum_{n=1}^{N} \bar{w}_{n}^{2}\right) + N\left(\frac{1}{N^{2}}\right) - \frac{2}{N}\sum_{n=1}^{N} \bar{w}_{n}}$$

$$= \sqrt{\left(\sum_{n=1}^{N} \bar{w}_{n}^{2}\right) - \frac{1}{N}}$$

$$= \sqrt{\frac{1}{P_{N}^{(2)}(\bar{\mathbf{w}})} - \frac{1}{N}}.$$
(8)

• Maximizing $P_N^{(2)}$ corresponds to minimize L_2 .

SO FAR: LITTLE SUMMARY

So far: ESS = P_N⁽²⁾(w̄) is a "bad" approximation of the theoretical definition.

- But the people like and use it; the main reason: maximizing $P_N^{(2)}$ corresponds to minimize L_2 .
- Discrepancy/distance between pmf $\mathbf{\bar{w}}$ and uniform pmf 1/N.
- Are there alternatives of the same type?

SO FAR: LITTLE SUMMARY

So far: ESS = P_N⁽²⁾(w̄) is a "bad" approximation of the theoretical definition.

- But the people like and use it; the main reason: maximizing $P_N^{(2)}$ corresponds to minimize L_2 .
- Discrepancy/distance between pmf $\mathbf{\bar{w}}$ and uniform pmf 1/N.
- Are there alternatives of the same type?
- (PS: the formula P_N⁽²⁾(w) is also known as Kish's Effective Sample Size and is used in other branches of statistics that involve weighted samples)
- ▶ (PS2: for *correlated* samples, we have another formula)

ALTERNATIVES: ESS APPROX BASED ON DISCREPANCY

 Other authors also propose the *perplexity* measure based on the discrete entropy [Cappe08].

ALTERNATIVES: ESS APPROX BASED ON DISCREPANCY

- Other authors also propose the *perplexity* measure based on the discrete entropy [Cappe08].
- We can also consider

$$\widehat{ESS} = D_N^{(\infty)}(\bar{\mathbf{w}}) = \frac{1}{\max\left[\bar{w}_1, \dots, \bar{w}_N\right]},\tag{9}$$

イロン イロン イヨン イヨン 三日

• Note that $1 \leq D_N^{(\infty)}(\mathbf{\bar{w}}) \leq N$.

GENERALIZED ESS FUNCTIONS

Generalized ESS (G-ESS) function:

$$E_N(\bar{\mathbf{w}}) = E_N(\bar{w}_1, \dots, \bar{w}_N) : \mathcal{S}_N \to [1, N], \tag{10}$$

where $S_N \subset \mathbb{R}^N$ represents the *unit simplex*, namely,

$$\bar{w}_1+\bar{w}_2+\ldots+\bar{w}_N=1.$$

Recall, we denote the vertices of the unit simplex as

$$ar{\mathbf{w}}^{(j)} = [ar{w}_1 = 0, \dots, ar{w}_j = 1, \dots, ar{w}_N = 0] = \delta(j),$$

and we denote also

$$\mathbf{\bar{w}}^* = \left[\frac{1}{N}, \ldots, \frac{1}{N}\right].$$

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ つ へ (* 13 / 39

GENERALIZED ESS: *strictly required* CONDITIONS

C1. Symmetry: E_N must be invariant under any permutation of the weights, i.e.,

$$E_N(\bar{w}_1, \bar{w}_2, \dots, \bar{w}_N) = E_N(\bar{w}_{j_1}, \bar{w}_{j_2}, \dots, \bar{w}_{j_N}), \qquad (11)$$

for any possible set of indices $\{j_1, \ldots, j_N\} = \{1, \ldots, N\}$. C2. Maximum condition: A maximum is reached at $\bar{\mathbf{w}}^*$ in Eq. (11) and has value N, i.e.,

$$E_N(\mathbf{\bar{w}}^*) = N \ge E_N(\mathbf{\bar{w}}).$$
 (12)

C3. Minimum condition: the minimum value is 1 and it is reached (at least) at the vertices $\bar{\mathbf{w}}^{(j)}$ of the unit simplex in Eq. (11),

$$E_{N}(\mathbf{\bar{w}}^{(j)}) = 1 \le E_{N}(\mathbf{\bar{w}}).$$
(13)

for all $j \in \{1, ..., N\}$.

GENERALIZED ESS: welcome CONDITIONS (1)

C4. Unicity of extreme values: The maximum at $\bar{\mathbf{w}}^*$ is unique, i.e., there are not other local maxima, and the the minimum value 1 is reached *only* at the vertices $\bar{\mathbf{w}}^{(j)}$, for all $j \in \{1, \ldots, N\}$.

GENERALIZED ESS: welcome CONDITIONS (2)

C5. Stability-Invariance of the rate $\frac{E_N(\bar{w})}{N}$: Consider the vectors $\bar{w} = [\bar{w}_1, \dots, \bar{w}_N] \in \mathbb{R}^N$ and a vector

$$\mathbf{\bar{v}} = [\bar{v}_1, \dots, \bar{v}_{MN}] \in \mathbb{R}^{MN}, \quad M \ge 1,$$
(14)

obtained repeating and scaling by $\frac{1}{M}$ the entries of $\mathbf{\bar{w}}$, i.e.,

$$\bar{\mathbf{v}} = \frac{1}{M} [\underbrace{\bar{\mathbf{w}}, \dots, \bar{\mathbf{w}}}_{M-times}], \tag{15}$$

i.e., $\bar{v}_1 = \frac{1}{M}\bar{w}_1, \dots, \bar{v}_N = \frac{1}{M}\bar{w}_N$ and $\bar{v}_{N+1} = \frac{1}{M}\bar{w}_1, \dots, \bar{v}_{MN} = \frac{1}{M}\bar{w}_N$. Then, the condition is given as

$$\frac{E_N(\bar{\mathbf{w}})}{N} = \frac{E_{MN}(\bar{\mathbf{v}})}{MN} \Longrightarrow E_N(\bar{\mathbf{w}}) = \frac{1}{M} E_{MN}(\bar{\mathbf{v}}), \tag{16}$$

for all $M \in \mathbb{N}^+$.

EXPLANATION OF C5

► Following the *optimistic approach*, we would like, for instance,

$$\mathbf{\bar{w}} = \left[0, 0, \frac{1}{2}, \frac{1}{2}\right] \rightarrow E_4(\mathbf{\bar{w}}) = 2,$$

and

$$\mathbf{ar{v}}=rac{1}{2}\left[\mathbf{ar{w}},\mathbf{ar{w}}
ight]=\left[0,0,rac{1}{4},rac{1}{4},0,0,rac{1}{4},rac{1}{4}
ight]
ightarrow E_8(\mathbf{ar{v}})=4.$$

i.e.,

$$E_4(\mathbf{\bar{w}}) = \frac{1}{2}E_8(\mathbf{\bar{v}}).$$

イロン イロン イヨン イヨン ヨー

17/39

$\ensuremath{\mathrm{TABLE}}$: Classification of G-ESS depending of the satisfied conditions.

Class of G-ESS		C 2	C 3	C4	C5
Degenerate (D)	Yes	Yes	Yes	No	No
Proper (P)	Yes	Yes	Yes	Yes	No
Degenerate and Stable (DS)		Yes	Yes	No	Yes
Proper and Stable (PS)		Yes	Yes	Yes	Yes

G-ESS: EXAMPLES (1)

- ▶ $P_N^{(2)}$ and $D_N^{(\infty)}$ are both of class PS, proper and stable.
- ▶ $V_N^{(0)}(\mathbf{\bar{w}}) = N N_Z$; N_Z is the number of zeros, belongs to the class DS, *degenerate and stable*.
- Let us denote the harmonic mean of the normalized weights as

$$\mathsf{HarM}(ar{\mathbf{w}}) = rac{1}{\sum_{n=1}^{N}rac{1}{ar{w}_n}}.$$

The following functions, involving the harmonic mean,

$$\begin{array}{lll} \mathcal{A}_{1,N}(\bar{\mathbf{w}}) &=& \displaystyle \frac{1}{(1-N)\mathsf{Har}\mathsf{M}(\bar{\mathbf{w}})+1}, \\ \mathcal{A}_{2,N}(\bar{\mathbf{w}}) &=& (N^2-N)\mathsf{Har}\mathsf{M}(\bar{\mathbf{w}})+1, \end{array}$$

are both *degenerate* G-ESS functions.

G-ESS: EXAMPLES (2)

They are *stable*:

Perplexity [Cappe08]:

$$\operatorname{Per}_{N}(\bar{\mathbf{w}}) = 2^{H(\bar{\mathbf{w}})}, \quad \text{with} \quad H(\bar{\mathbf{w}}) = -\sum_{n=1}^{N} \bar{w}_{n} \log_{2}(\bar{w}_{n}).$$

• using Gini coefficient $G(\mathbf{\bar{w}})$:

$$\operatorname{Gin}_N(\bar{\mathbf{w}}) = -NG(\bar{\mathbf{w}}) + N.$$

Threshold ESS (degenerate):

N-Plus_N($\mathbf{\bar{w}}$) = N^+ ,

where $N^+ = \text{Cardinality}\{\bar{w}_n \geq \frac{1}{N}, n = 1, \dots, N\}.$

・ロ ・ ・ (語 ・ く 語 ・ く 語 ・ 語 の Q ()
20 / 39

BUILD G-ESS FAMILIES

Given a non-linear transformation of the weights $f(\mathbf{\bar{w}})$

 $f(\bar{\mathbf{w}}): \mathbb{R}^N \to \mathbb{R}$, which satisfies the following properties:

- 1. $f(\bar{\mathbf{w}})$ is a quasi-concave or a quasi-convex function, with a minimum or a maximum (respectively) at $\bar{\mathbf{w}}^* = \begin{bmatrix} 1\\ N, \dots, N \end{bmatrix}$.
- 2. $f(\bar{\mathbf{w}})$ is symmetric in the sense of Eq. (11).
- 3. Considering the vertices of the unit simplex $\bar{\mathbf{w}}^{(i)} = \delta(i)$ in Eq. (B.2), then we also assume

 $f(\bar{\mathbf{W}}^{(i)}) = c,$

where $c \in \mathbb{R}$ is a constant value, the same for all i = 1, ..., N.

We define the G-ESS families of type:

$$E_N(\mathbf{\bar{w}}) = \frac{1}{af(\mathbf{\bar{w}}) + b}, \text{ or } E_N(\mathbf{\bar{w}}) = af(\mathbf{\bar{w}}) + b,$$

where we tune a and b in order to fulfill the strictly-required conditions (at least).

BUILD G-ESS FAMILIES

We try to solve the linear $(f(\mathbf{\bar{w}}^*) \text{ and } f(\mathbf{\bar{w}}^{(i)}) \text{ are given})$ systems

$$\begin{cases} af(\bar{\mathbf{w}}^*) + b = \frac{1}{N}, \\ af(\bar{\mathbf{w}}^{(i)}) + b = 1, \quad \forall \ i \in \{1, ..., N\}. \end{cases}$$

or

$$\begin{cases} af(\bar{\mathbf{w}}^*) + b = N, \\ af(\bar{\mathbf{w}}^{(i)}) + b = 1, \quad \forall i \in \{1, ..., N\}, \end{cases}$$

FOUR G-ESS FAMILIES

TABLE: Summary of the G-ESS families (in general, *proper*, with exception...).

$P_N^{(r)}(ar{\mathbf{w}})$	$D_N^{(r)}(ar{\mathbf{w}})$	$V_N^{(r)}(ar{\mathbf{w}})$	$S_N^{(r)}(ar{\mathbf{w}})$
$\frac{1}{a_r\sum_{n=1}^N(\bar{w}_n)^r+b_r}$	$\frac{1}{a_r \left[\sum_{n=1}^N (\bar{w}_n)^r\right]^{\frac{1}{r}} + b_r}$	$a_r\sum_{n=1}^N (\bar{w}_n)^r + b_r$	$a_r \left[\sum_{n=1}^N \left(\bar{w}_n\right)^r\right]^{\frac{1}{r}} + b_r$
$a_r = \frac{1-N}{N^{(2-r)}-N}$	$a_r = \frac{N-1}{N-N^{\frac{1}{r}}}$	$a_r = \frac{N^{r-1}(N-1)}{1-N^{r-1}}$	$a_r = \frac{N-1}{N^{\frac{1-r}{r}}-1}$
$b_r = \frac{N^{(2-r)}-1}{N^{(2-r)}-N}$	$b_r = rac{1-Nrac{1}{r}}{N-Nrac{1}{r}}$	$b_r = rac{N^r - 1}{N^{r-1} - 1}$	$b_r = rac{Nrac{1-r}{r}-N}{Nrac{1-r}{r}-1}$

They satisfy always C1, C2, C3, often C4 (not always) and sometimes C5.

Special cases of $P_N^{(r)}(\mathbf{\bar{w}})$

Par.:	$r \rightarrow 0$	r ightarrow 1	r = 2	$r ightarrow \infty$	
$P_N^{(r)}(ar{\mathbf{w}}) =$	$\frac{N}{N_Z+1}$	$\frac{-N\log_2(N)}{-N\log_2(N)+(N-1)H(\mathbf{\bar{w}})}$	$\frac{1}{\sum_{n=1}^N \bar{w}_n^2}$	$\begin{cases} N, & \text{if } \bar{\mathbf{w}} \neq \bar{\mathbf{w}}^{(i)}, \\ 1, & \text{if } \bar{\mathbf{w}} = \bar{\mathbf{w}}^{(i)}. \end{cases}$	
	NZ	Discrete entropy	P ⁽²⁾		
Com.:	contained in $\bar{\mathbf{w}}$	$H(\bar{\mathbf{w}}) = -\sum_{n=1}^{N} \bar{w}_n \log_2(\bar{w}_n)$	'N Proper-Stable	Degenerate	
	Degenerate	Proper			

Special case $P_N^{(1)}(\mathbf{\bar{w}})$

▶ $a_r \to \pm \infty$, $b_r \to \mp \infty$, $(\bar{w}_n)^r \to 1$ when $r \to 1$, we have an indeterminate form of type $\frac{0}{0}$ in limit

$$\lim_{r \to 1} P_N^{(r)}(\bar{\mathbf{w}}) = \lim_{r \to 1} \frac{N^{(2-r)} - N}{(1-N)\sum_{n=1}^N (\bar{w}_n)^r + N^{(2-r)} - 1} = \frac{0}{0},$$

Applying the L'Hôpital's rule,

$$P_{N}^{(1)}(\bar{\mathbf{w}}) = \lim_{r \to 1} \frac{-N^{(2-r)} \log(N)}{-N^{(2-r)} \log(N) - (N-1) \sum_{n=1}^{N} \bar{w}_{n}^{r} \log(\bar{w}_{n})},$$

$$= \frac{-N \log(N)}{-N \log(N) - (N-1) \sum_{n=1}^{N} \bar{w}_{n} \log(\bar{w}_{n})},$$

$$= \frac{-N \frac{\log_{2}(N)}{\log_{2} e}}{-N \frac{\log_{2}(N)}{\log_{2} e} - (N-1) \sum_{n=1}^{N} \bar{w}_{n} \frac{\log_{2}(\bar{w}_{n})}{\log_{2} e}},$$

$$= \frac{-N \log_{2}(N)}{-N \log_{2}(N) + (N-1)H(\bar{\mathbf{w}})}, \qquad (17)$$

where we have denoted as $H(\bar{\mathbf{w}}) = -\sum_{n=1}^{N} \bar{w}_n \log_2(\bar{w}_n)$ the discrete entropy of the pmf \bar{w}_n , n = 1, ..., N.

Special cases of $D_N^{(r)}(ar{\mathbf{w}})$

Parameter:	r ightarrow 0	r ightarrow 1	$\mathbf{r} ightarrow\infty$
$D_N^{(r)}(\bar{\mathbf{w}}) =$	$\frac{1}{(1-N)\text{Geo}M(\bar{\mathbf{w}})+1}$	$\frac{-N\log_2(N)}{-N\log_2(N)+(N-1)H(\bar{\mathbf{w}})}$	$\frac{1}{\max[\bar{w}_1,\ldots,\bar{w}_N]}$
	Geometric Mean	Discrete entropy	
Comments:	$GeoM(\bar{\mathbf{w}}) = \left[\prod_{n=1}^{N} \bar{w}_n\right]^{1/N}$	$H(\bar{\mathbf{w}}) = -\sum_{n=1}^{N} \bar{w}_n \log_2(\bar{w}_n)$	$D_N^{(\infty)}$
	Degenerate	Proper	Proper-Stable

Special cases of $V_N^{(r)}(\mathbf{\bar{w}})$

Parameter:	$r \rightarrow 0$	r ightarrow 1	$r ightarrow \infty$	
$V_N^{(r)}(ar{\mathbf{w}}) =$	$N - N_Z$	$rac{N-1}{\log_2(N)}H(\mathbf{ar w})+1$	$\begin{cases} N & \text{if } \bar{\mathbf{w}} \neq \bar{\mathbf{w}}^{(i)}, \\ 1, & \text{if } \bar{\mathbf{w}} = \bar{\mathbf{w}}^{(i)}. \end{cases}$	
Comments:	N _Z number of zeros in ѿ Degenerate-Stable	$\begin{array}{l} \textit{Discrete Entropy} \\ \textit{H}(\bar{\mathbf{w}}) = -\sum_{n=1}^{N} \bar{w}_n \log_2(\bar{w}_n) \\ \textit{Proper} \end{array}$	Degenerate	

Special cases of $S_N^{(r)}(ar{\mathbf{w}})$

Par.:	r ightarrow 0	$r=rac{1}{2}$	r ightarrow 1	$r ightarrow \infty$
$S_N^{(r)}(\mathbf{\bar{w}})$	$(N^2 - N)$ GeoM $(\mathbf{\bar{w}}) + 1$	$\left(\sum_{n=1}^{N}\sqrt{w_n}\right)^2$	$\frac{N-1}{\log_2(N)}H(\bar{\mathbf{w}})+1$	$N+1-N\max[ar{w}_1,\ldots,ar{w}_N]$
	Geometric Mean		Discrete Entropy	
Com.:	$GeoM(\mathbf{\bar{w}}) = \left[\prod_{n=1}^{N} \bar{w}_n\right]^{1/N}$	Prop-Stable	H(w)	Proper
	Degenerate		Proper	

SUMMARY

TABLE: Stable G-ESS functions and related inequalities.

Threshold	GINI	$D_N^{(\infty)}(ar{\mathbf{w}})$	$P_N^{(2)}(\bar{\mathbf{w}})$	Perplex	$S_N^{(rac{1}{2})}(ar{\mathbf{w}})$	$V_N^{(0)}(ar{\mathbf{w}})$
N ⁺	$-NG(\mathbf{\bar{w}}) + N$	$\frac{1}{\max[\bar{w}_1,\ldots,\bar{w}_N]}$	$\frac{1}{\sum_{n=1}^{N}\bar{w}_{n}^{2}}$	2 ^{<i>H</i>(w)}	$\left(\sum_{n=1}^{N}\sqrt{\bar{w}_n}\right)^2$	$N - N_Z$
DS	PS	PS	PS	PS	PS	DS
all-C4	all	all	all	all	all	all-C4
	$D_N^{(\infty)}(ar{\mathbf{w}}) \leq P_N^{(2)}(ar{\mathbf{w}}) \leq S_N^{(rac{1}{2})}(ar{\mathbf{w}}) \leq V_N^{(0)}(ar{\mathbf{w}}), orall ar{\mathbf{w}} \in \mathcal{S}_N$					

HUGGINS-ROY'S FAMILY All proper and stable!! for $\beta > 0$ ($\beta = 0$ degenerate)

The Huggins-Roy's family introduced in [13] is defined as

$$\begin{split} H_N^{(\beta)}(\bar{\mathbf{w}}) &= \left(\frac{1}{\sum_{n=1}^N \bar{w}_n^\beta}\right)^{\frac{1}{\beta-1}}, \\ &= \left(\sum_{n=1}^N \bar{w}_n^\beta\right)^{\frac{1}{1-\beta}}, \qquad \beta \ge 0. \end{split}$$

Table 1 Special cases of G-ESS functions contained in the Huggins-Roy's family.

eta=0	$\beta = 1/2$	$\beta = 1$	$\beta = 2$	$\beta = \infty$
$N - N_Z$	$\left(\sum_{n=1}^N \sqrt{\bar{w}_n}\right)^2$	$\exp\left(-\sum_{n=1}^N \bar{w}_n \log \bar{w}_n\right)$	$\frac{1}{\sum_{n=1}^N \bar{w}_n^2}$	$\tfrac{1}{\max[\bar{w}_1,\ldots,\bar{w}_N]}$
where N_Z is the number of zeros in $\bar{\mathbf{w}}$		(perplexity)	(standard approximation)	

Relationship with the Rényi entropy

The Rényi entropy [6] is defined as

$$R_N^{(\beta)}(\bar{\mathbf{w}}) = \frac{1}{1-\beta} \log\left[\sum_{n=1}^N \bar{w}_n^\beta\right], \qquad \beta \ge 0,$$

Then, it is straightforward to note that

$$H_N^{(\beta)}(\bar{\mathbf{w}}) = \exp\left(R_N^{(\beta)}(\bar{\mathbf{w}})\right),$$

The Huggins-Roy's family contains the *diversity indices* based on the Rényi entropy.

NUMERICAL SIMULATIONS/CONSIDERATIONS

Drawing $\bar{\mathbf{w}}$ uniformly in the unit simplex:

NUMERICAL SIMULATIONS/CONSIDERATIONS

These values (the statistics of these histograms) can be useful in the adaptive resampling applications:

$$\widehat{ESS}(\mathbf{\bar{w}}) \leq \epsilon N,$$

with $0 < \epsilon < 1$.

- ▶ Perhaps, these histograms explain the value \(\epsilon = \frac{1}{2}\), suggested in [Doucet08; page15] for P⁽²⁾_N.
- ► We compare P_N⁽²⁾ and D_N^(∞) in a "right way" within a particle filter (in that example D_N^(∞) works better)

$$\bar{\pi}(x) = \mathcal{N}(x; 0, 1),$$
(39)

and also a Gaussian proposal pdf,

$$q(x) = \mathcal{N}(x; \mu_p, \sigma_p^2), \tag{40}$$

with mean μ_p and variance σ_p^2 . Furthermore, we consider different experiment settings:

- **S1** In this scenario, we set $\sigma_p = 1$ and vary $\mu_p \in [0, 2]$. Clearly, for $\mu_p = 0$ we have the ideal Monte Carlo case, $q(x) \equiv \bar{\pi}(x)$. As μ_p increases, the proposal becomes more different from $\bar{\pi}$. We consider the estimation of the expected value of the random variable $X \sim \bar{\pi}(x)$, i.e., we set h(x) = x in the integral of Eq. (1).
- **S2** In this case, we set $\mu_p = 1$ and consider $\sigma_p \in [0.23, 4]$. We set h(x) = x.
- **S3** We fix $\sigma_p = 1$ and $\mu_p \in \{0.3, 0.5, 1, 1.5\}$ and vary the number of samples *N*. We consider again h(x) = x.

Fig. 3. ESS rates corresponding to ESS_{mit}(h) (solid line), ESS_{Mitl}(h) (dashed line; shown only in (a)-(c)), $R_N^{(2)}$ (circles), $I_N^{(m)}$ (squares), Giniy (stars), $S_N^{(1/2)}$ (triangles up), Q_N (x-marks), Peny (triangles down).

■ つへで 35/39

Hg. 4. [Setting S3] ESS rates as function of N, corresponding to the theoretical ESS, i.e., ESS_{wel}(h) (solid line), and the G-ESS functions: $P_N^{(2)}$ (circles), $D_N^{(m)}$ (squares), $Gin_N^{(1)}$ (stars), $S_N^{(1/2)}$ (triangles up), Q_N (x-marks), Peny (triangles down).

36 / 39

ъ

Figure 3 ESS rates (i.e., the ratio of ESS values over N) corresponding to the theoretical ESS value (solid line), $H_N^{(2)}$ (circles) and $H_N^{(\infty)}$ (squares). We set N = 1000.

Figure 4 ESS rates (i.e., the ratio of ESS values over N) corresponding to the theoretical ESS value (solid line), $H_N^{(4)}$ (dashed line) and the linear combination E_N in Eq. (5.4)-(5.5) (squares). We set N = 1000. The approximation provided by $H_N^{(4)}$ is virtually perfect for $\mu_p \leq 1$.

Some references

[Kong92]: A. Kong. A note on importance sampling using standardized weights. University of Chicago, Dept. of Statistics, Tech. Rep., vol. 348, 1992.
[Robert10]: C. P. Robert and G. Casella. Introducing Monte Carlo Methods with R. Springer, 2010.

[Liu01]: J. S. Liu, R. Chen, and T. Logvinenko. A Theoretical Framework for Sequential Importance Sampling with Resampling. *CHAPTER 11:*

Sequential Monte Carlo Methods in Practice, Springer, New York, 2001.

[Cappe08]: O. Cappé, R. Douc, A. Guillin, J. M. Marin, and C. P. Robert. Population Monte Carlo. *Statistics and Computing*, 18:447-459, 2008.

[Cappe04]: O. Cappé, A. Guillin, J. M. Marin, and C. P. Robert. Population Monte Carlo. Journal of Computational and Graphical Statistics, 13
(4):907-929, 2004.
[Doucet01]: A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte Carlo Methods in Practice. Springer, New York, 2001.
[Doucet08]: A. Doucet, A. M. Johansen. A Tutorial on Particle Filtering and Smoothing: Fifteen years later. Tec. Rep., 2008.