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Approximating integrals

I In Bayesian inference, we often need to compute efficiently
integrals involving the (posterior) target pdf π̄(x) = 1

Z π(x),

I (h) =

∫
X

h(x)π̄(x)dx =
1

Z

∫
X

h(x)π(x)dx, (1)

I We approximate I (h) by Monte Carlo methods.
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Monte Carlo - Importance Sampling (IS)

I STANDARD-“IDEAL” CASE: Draw xn ∼ π̄(x), n = 1, . . . ,N,
and

Î (h) =
1

N

N∑
n=1

h(xn) −→
N→∞

I .

I In general, it is not possible to draw from π̄(x).

I IMPORTANCE SAMPLING (IS): Draw xn ∼ q(x),
n = 1, . . . ,N,

Ĩ (h) =
N∑

n=1

w̄nh(xn) −→
N→∞

I .

where

wn =
π(xn)

q(xn)
, w̄n =

wn∑N
n=1 wn

.
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Effective Sample Size (ESS)

I Generally, using IS, we lose some efficiency w.r.t. the standard
MC case.

I From a theoretical and practical point of view, it is important
to measure this loss of efficiency.

I Statistically speaking: do my N weighted samples correspond
to E samples (with E < N) independently drawn from π̄?

I A possible math-definition of the Effective Sample Size (ESS)
is:

E = ESS = N
varπ [̂I ]

varq [̃I ]
. (2)

See [Kong92].
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Effective Sample Size (ESS) - definition
drawbacks/observations

I The definition depends on h(x):

ESS(h) = N
varπ [̂I (h)]

varq [̃I (h)]
.

I A more complete definition should be:

ESS = N
MSEπ [̂I ]

MSEq [̃I ]
= N

varπ [̂I ]

MSEq [̃I ]
. (3)
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Effective Sample Size in practice

I However, the theoretical formula is “useless” from a practical
point of view.

ESS = N
varπ [̂I ]

varq [̃I ]

Kong92−−−−−−→ ÊSS =?

I Try to find something that we can easily compute.
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Effective Sample Size in practice

I After several approximations and assumptions, one can obtain

ESS ≈ ÊSS = P
(2)
N (w̄) =

1∑N
n=1(w̄n)2

, (4)

where w̄ = [w̄1, . . . , w̄N ] is the vector of normalized weights.

I Several methods (particle filters, population Monte Carlo,
adaptive importance sampling schemes) use this formula
above.

I It is possible to show that

1 ≤ P
(2)
N (w̄) ≤ N. (5)

See [Kong92,Robert10,Liu01].
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Weaknesses of P
(2)
N (w̄)

I Due to the several approximations and strong assumptions:
loss of information

x1 x2x3

w2 = 2.01

w1 = 1
w3 = 0.9

x1 x2x3

w̄2 = 0.51
w̄1 = 0.25

w̄3 = 0.23

w̄2 = 0.51

w̄1 = 0.25 w̄3 = 0.23

1 2 3
x x n

I P
(2)
N does not depend on h(x).

I P
(2)
N does not depend on the samples xn.

I One assumption is that xn ∼ q(x) for all n, but in different
methods, we have x1 ∼ q1(x), . . ., xN ∼ qN(x).

I By definition of ESS = N varπ[bI ]

varq [eI ]
, we can have

0 ≤ ESS ≤ B, B ≥ N.
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Strengths/Reasons to use P
(2)
N (w̄)

I Why is it used? It works reasonable well in different
applications: people like it.

I Using only the info of the normalized weights w̄n, the

inequalities 1 ≤ P
(2)
N (w̄) ≤ N are reasonable. It applies an

optimistic approach:

w̄∗ =

[
1

N
, . . . ,

1

N

]
=⇒ P

(2)
N (w̄∗) = N, (6)

w̄(i) = [0, . . . , 1︸︷︷︸
i

, . . . , 0] =⇒ P
(2)
N (w̄(i)) = 1. (7)

I easy to be used, for adaptive resampling:

P
(2)
N (w̄) ≤ εN

with 0 < ε < 1.
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Alternative derivation/motivation of P
(2)
N (w̄)

I Alternative derivation based on the need (or not) of resampling.

I Let us consider the Euclidean distance L2 between these two the discrete
uniform pmf U{1, 2, . . . , N} and the pmf w̄n, i.e,

L2 =

vuut NX
n=1

„
w̄n −

1

N

«2

=

vuut NX
n=1

w̄ 2
n

!
+ N

„
1

N2

«
− 2

N

NX
n=1

w̄n

=

vuut NX
n=1

w̄ 2
n

!
− 1

N

=

s
1

P
(2)
N (w̄)

− 1

N
. (8)

I Maximizing P
(2)
N corresponds to minimize L2.
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So far: Little summary

I So far: ÊSS = P
(2)
N (w̄) is a “bad” approximation of the

theoretical definition.

I But the people like and use it; the main reason: maximizing

P
(2)
N corresponds to minimize L2.

I Discrepancy/distance between pmf w̄ and uniform pmf 1/N.

I Are there alternatives of the same type?

I (PS: the formula P
(2)
N (w̄) is also known as Kish’s Effective

Sample Size and is used in other branches of statistics that
involve weighted samples)

I (PS2: for correlated samples, we have another formula)
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Alternatives: ESS approx based on
discrepancy

I Other authors also propose the perplexity measure based on
the discrete entropy [Cappe08].

I We can also consider

ÊSS = D
(∞)
N (w̄) =

1

max [w̄1, . . . , w̄N ]
, (9)

I Note that 1 ≤ D
(∞)
N (w̄) ≤ N.

12 / 39



Alternatives: ESS approx based on
discrepancy

I Other authors also propose the perplexity measure based on
the discrete entropy [Cappe08].

I We can also consider
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Generalized ESS functions

I Generalized ESS (G-ESS) function:

EN(w̄) = EN(w̄1, . . . , w̄N) : SN → [1,N], (10)

where SN ⊂ RN represents the unit simplex, namely,

w̄1 + w̄2 + . . .+ w̄N = 1.

Recall, we denote the vertices of the unit simplex as

w̄(j) = [w̄1 = 0, . . . , w̄j = 1, . . . , w̄N = 0] = δ(j),

and we denote also

w̄∗ =

[
1

N
, . . . ,

1

N

]
.
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Generalized ESS: strictly required conditions

C1. Symmetry: EN must be invariant under any permutation of
the weights, i.e.,

EN(w̄1, w̄2, . . . , w̄N) = EN(w̄j1 , w̄j2 , . . . , w̄jN ), (11)

for any possible set of indices {j1, . . . , jN} = {1, . . . ,N}.
C2. Maximum condition: A maximum is reached at w̄∗ in Eq.

(11) and has value N, i.e.,

EN (w̄∗) = N ≥ EN(w̄). (12)

C3. Minimum condition: the minimum value is 1 and it is
reached (at least) at the vertices w̄(j) of the unit simplex in
Eq. (11),

EN(w̄(j)) = 1 ≤ EN(w̄). (13)

for all j ∈ {1, . . . ,N}.
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Generalized ESS: welcome conditions (1)

C4. Unicity of extreme values: The maximum at w̄∗ is unique,
i.e., there are not other local maxima, and the the minimum
value 1 is reached only at the vertices w̄(j), for all
j ∈ {1, . . . ,N}.
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Generalized ESS: welcome conditions (2)

C5. Stability-Invariance of the rate EN (w̄)
N

: Consider the vectors

w̄ = [w̄1, . . . , w̄N ] ∈ RN and a vector

v̄ = [v̄1, . . . , v̄MN ] ∈ RMN , M ≥ 1, (14)

obtained repeating and scaling by 1
M

the entries of w̄, i.e.,

v̄ =
1

M
[w̄, . . . , w̄| {z }

M−times

], (15)

i.e., v̄1 = 1
M

w̄1, . . . , v̄N = 1
M

w̄N and v̄N+1 = 1
M

w̄1, . . . , v̄MN = 1
M

w̄N . Then,
the condition is given as

EN(w̄)

N
=

EMN(v̄)

MN
=⇒ EN(w̄) =

1

M
EMN(v̄), (16)

for all M ∈ N+.
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Explanation of C5

I Following the optimistic approach, we would like, for instance,

w̄ =

[
0, 0,

1

2
,

1

2

]
→ E4(w̄) = 2,

and

v̄ =
1

2
[w̄, w̄] =

[
0, 0,

1

4
,

1

4
, 0, 0,

1

4
,

1

4

]
→ E8(v̄) = 4.

i.e.,

E4(w̄) =
1

2
E8(v̄).
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G-ESS: classifications

Table: Classification of G-ESS depending of the satisfied conditions.

Class of G-ESS C1 C2 C3 C4 C5

Degenerate (D) Yes Yes Yes No No

Proper (P) Yes Yes Yes Yes No

Degenerate and Stable (DS) Yes Yes Yes No Yes

Proper and Stable (PS) Yes Yes Yes Yes Yes
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G-ESS: examples (1)

I P
(2)
N and D

(∞)
N are both of class PS, proper and stable.

I V
(0)
N (w̄) = N −NZ ; NZ is the number of zeros, belongs to the

class DS, degenerate and stable.

I Let us denote the harmonic mean of the normalized weights as

HarM(w̄) =
1∑N

n=1
1
w̄n

.

The following functions, involving the harmonic mean,

A1,N(w̄) =
1

(1− N)HarM(w̄) + 1
,

A2,N(w̄) = (N2 − N)HarM(w̄) + 1,

are both degenerate G-ESS functions.
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G-ESS: examples (2)

They are stable:

I Perplexity [Cappe08]:

PerN(w̄) = 2H(w̄), with H(w̄) = −
N∑

n=1

w̄n log2(w̄n).

I using Gini coefficient G (w̄):

GinN(w̄) = −NG (w̄) + N.

I Threshold ESS (degenerate):

N-PlusN(w̄) = N+,

where N+ = Cardinality{w̄n ≥ 1
N , n = 1, . . . ,N}.
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Build G-ESS families

Given a non-linear transformation of the weights f (w̄)

We define the G-ESS families of type:

where we tune a and b in order to fulfill the strictly-required
conditions (at least).
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Build G-ESS families

We try to solve the linear (f (w̄∗) and f (w̄(i)) are given) systems
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Four G-ESS families

Table: Summary of the G-ESS families (in general, proper, with
exception...).

P
(r)
N (w̄) D

(r)
N (w̄) V

(r)
N (w̄) S

(r)
N (w̄)

1
ar

PN
n=1(w̄n)r +br

1

ar [
PN

n=1(w̄n)r ]
1
r +br

ar

PN
n=1 (w̄n)r + br ar

hPN
n=1 (w̄n)r

i 1
r

+ br

ar = 1−N

N(2−r)−N
ar = N−1

N−N
1
r

ar = Nr−1(N−1)

1−Nr−1
ar = N−1

N
1−r

r −1

br = N(2−r)−1

N(2−r)−N
br = 1−N

1
r

N−N
1
r

br = Nr−1
Nr−1−1

br = N
1−r

r −N

N
1−r

r −1

They satisfy always C1, C2, C3, often C4 (not always) and
sometimes C5.
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Special cases of P
(r)
N (w̄)

Par.: r→ 0 r→ 1 r = 2 r→∞

P
(r)
N (w̄) =

N
NZ +1

−N log2(N)
−N log2(N)+(N−1)H(w̄)

1PN
n=1 w̄2

n

n N, if w̄ 6= w̄(i),

1, if w̄ = w̄(i).

Com.:
NZ Discrete entropy

P
(2)
N

Degenerate
contained in w̄

H(w̄) = −
PN

n=1 w̄n log2(w̄n)
Degenerate

Proper-Stable
Proper

24 / 39



Special case P
(1)
N (w̄)

I ar → ±∞, br → ∓∞, (w̄n)r → 1 when r → 1, we have an indeterminate
form of type 0

0
in limit

lim
r→1

P
(r)
N (w̄) = lim

r→1

N(2−r) − N

(1− N)
PN

n=1 (w̄n)r + N(2−r) − 1
=

0

0
,

I Applying the L’Hôpital’s rule,

P
(1)
N (w̄) = lim

r→1

−N(2−r) log(N)

−N(2−r) log(N)− (N − 1)
PN

n=1 w̄ r
n log(w̄n)

,

=
−N log(N)

−N log(N)− (N − 1)
PN

n=1 w̄n log(w̄n)
,

=
−N log2(N)

log2 e

−N log2(N)
log2 e

− (N − 1)
PN

n=1 w̄n
log2(w̄n)

log2 e

,

=
−N log2(N)

−N log2(N) + (N − 1)H(w̄)
, (17)

where we have denoted as H(w̄) = −
PN

n=1 w̄n log2(w̄n) the discrete
entropy of the pmf w̄n, n = 1, . . . , N.
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Special cases of D
(r)
N (w̄)

Parameter: r→ 0 r→ 1 r→∞

D
(r)
N (w̄) =

1
(1−N)GeoM(w̄)+1

−N log2(N)
−N log2(N)+(N−1)H(w̄)

1
max[w̄1,...,w̄N ]

Geometric Mean Discrete entropy

D
(∞)
NComments: GeoM(w̄) =

hQN
n=1 w̄n

i1/N
H(w̄) = −

PN
n=1 w̄n log2(w̄n)

Degenerate Proper Proper-Stable
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Special cases of V
(r)
N (w̄)

Parameter: r→ 0 r→ 1 r→∞

V
(r)
N (w̄) = N − NZ

N−1
log2(N)

H(w̄) + 1
n N if w̄ 6= w̄(i),

1, if w̄ = w̄(i).

Discrete Entropy
DegenerateComments: NZ number of zeros in w̄ H(w̄) = −

PN
n=1 w̄n log2(w̄n)

Degenerate-Stable Proper
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Special cases of S
(r)
N (w̄)

Par.: r→ 0 r = 1
2

r→ 1 r→∞

S
(r)
N (w̄) (N2 − N)GeoM(w̄) + 1

“PN
n=1

√
wn

”2 N−1
log2(N)

H(w̄) + 1 N + 1− N max[w̄1, . . . , w̄N ]

Geometric Mean Discrete Entropy

Com.: GeoM(w̄) =
hQN

n=1 w̄n

i1/N
Prop-Stable H(w̄) Proper

Degenerate Proper
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Summary

Table: Stable G-ESS functions and related inequalities.

Threshold GINI D
(∞)
N (w̄) P

(2)
N (w̄) Perplex S

( 1
2

)

N (w̄) V
(0)
N (w̄)

N+ −NG(w̄) + N 1
max[w̄1,...,w̄N ]

1PN
n=1 w̄2

n
2H(w̄)

“PN
n=1

√
w̄n

”2
N − NZ

DS PS PS PS PS PS DS
all-C4 all all all all all all-C4

D
(∞)
N (w̄) ≤ P

(2)
N (w̄) ≤ S

( 1
2

)

N (w̄) ≤ V
(0)
N (w̄), ∀w̄ ∈ SN
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Huggins-Roy’s family
All proper and stable!! for β > 0 (β = 0 degenerate)
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Relationship with the Rényi entropy

The Huggins-Roy’s family contains the diversity indices based on
the Rényi entropy.
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Numerical Simulations/Considerations
Drawing w̄ uniformly in the unit simplex:
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Numerical Simulations/Considerations

I These values (the statistics of these histograms) can be useful
in the adaptive resampling applications:

ÊSS(w̄) ≤ εN,

with 0 < ε < 1.

I Perhaps, these histograms explain the value ε = 1
2 , suggested

in [Doucet08; page15] for P
(2)
N .

I We compare P
(2)
N and D

(∞)
N in a “right way” within a particle

filter (in that example D
(∞)
N works better)
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Numerical Simulations
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Numerical Simulations
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Numerical Simulations
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Numerical Simulations
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Numerical Simulations
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