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In Bayesian signal processing, all the information about the unknowns of interest is contained in their 
posterior distributions. The unknowns can be parameters of a model, or a model and its parameters. In 
many important problems, these distributions are impossible to obtain in analytical form. An alternative 
is to generate their approximations by Monte Carlo-based methods like Markov chain Monte Carlo 
(MCMC) sampling, adaptive importance sampling (AIS) or particle filtering (PF). While MCMC sampling 
and PF have received considerable attention in the literature and are reasonably well understood, the AIS 
methodology remains relatively unexplored. This article reviews the basics of AIS as well as provides a 
comprehensive survey of the state-of-the-art of the topic. Some of its most relevant implementations are 
revisited and compared through computer simulation examples.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

The past two decades have witnessed an astounding growth in 
the field of statistical signal and information processing. The ad-
vances in the field have been particularly compelling in terms of 
computational methods. This progress has been unleashed with 
the ever increasing computing power available nowadays at very 
low costs. Bayesian signal and information processing has perhaps 
benefited most significantly from the advances in computing hard-
ware and algorithms [1]. With this technological momentum, the 
Bayesians freed themselves from the computational limitations of 
the classical approaches and found a range of new opportunities 
for handling models of very high complexities. As a result, Bayesian 
theory and practice have seen remarkable advances. Many dis-
ciplines have benefited from these developments including engi-
neering, bioinformatics, econometrics, astronomy, climatology, and 
computational physics.

A driving force for the increased popularity of Bayesian meth-
ods has been the progress in the theory and practice of reject–
accept methods [2,3], Markov chain Monte Carlo (MCMC) algo-
rithms [4–6] and particle filtering (PF) [7]. All these methodologies 
are based on approximating distributions of unknown parameters 
(or states) of interest by samples and associated weights [8–12]. 
Recently, adaptive importance sampling (AIS) [13] has resurfaced 
as an alternative to MCMC sampling and it has gained attention in 
various research communities [14]. Unlike MCMC sampling, which 
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exploits Markov chains to reach a desired (target) distribution for 
generating the desired samples, the AIS methodology draws them 
from distributions that improve with iterations. AIS schemes do 
not reject any of the generated samples, do not necessitate of 
burn-in periods and can be implemented easily [15]. Additionally, 
with AIS methods, it is possible to easily estimate the normalizing 
constant of the posterior target distribution (also called Bayesian 
evidence, marginal likelihood or partition function) by averaging 
the unnormalized importance weights. The marginal likelihood is 
particularly useful in model selection [2,16]. Furthermore, in gen-
eral, the consistency of AIS schemes is easily guaranteed by weak 
basic conditions, whereas the theoretical study of the convergence 
of a Markov chain generated by an adaptive MCMC method needs 
more careful considerations [17–19].

The key idea behind AIS is importance sampling [20,21]. It boils 
down to generating samples from a cleverly selected distribution 
called instrumental, importance or proposal function. This distri-
bution is different from the target distribution because one as-
sumes that direct sampling from the target distribution is infeasi-
ble. Good proposal functions do closely resemble the target distri-
bution. Once the samples are generated from a proposal function, 
they are assigned weights. The samples with their weights repre-
sent an approximation of the target distribution. The key problem 
is that good proposal functions are very hard to choose in an au-
tomated fashion. On the other hand, Bayesian theory suggests that 
one can start by generating samples from the prior and weight-
ing them using the posterior (usually the target distribution). The 
obtained set of samples and weights is an approximation of the 
posterior that can be improved. To that end, a tempting idea is to 
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use this approximation in constructing a better instrumental func-
tion than the originally used prior. If this works, the samples and 
weights of the improved proposal function will produce a better 
approximation of the posterior. Consequently, this approximation 
can also serve to again construct a better proposal function. This 
is naturally the case with all the subsequent approximations too. 
Thus, the importance sampling keeps adapting as one proceeds 
with iterations, which is why the methodology is referred to as 
AIS. In this process, learning takes place from samples and weights 
obtained in previous iterations.

This paper reviews the theory and practice of AIS when applied 
to problems in signal processing. More specifically, the next sec-
tion provides the general background and discusses the basics of 
the AIS method. After that, an extensive survey of the literature 
on the topic is presented and includes a summary of the most 
important convergence results. The section on implementations 
details some of the most popular AIS algorithms including the po-
pulation Monte Carlo (PMC) [15], the AIS with mixture Gaussian 
proposals [22], the adaptive multiple importance sampling (AMIS)
[14,23], and the adaptive population importance sampler (APIS) 
[24,25]. The section on examples analyzes and compares the dis-
cussed algorithms as well as the MCMC through computer sim-
ulations. Three relevant problems are examined: the well known 
“banana-shaped” distribution [17] as proof of concept, a high-
dimensional setting with a multimodal target distribution, and an 
autoregressive (AR) model in a non-Gaussian noise scenario. The 
final section provides some closing remarks.

2. Background and the basics of AIS

A very important challenge in many signal processing problems 
is the reliable approximation of target distributions. Unfortunately 
in many scenarios such approximation cannot be obtained ana-
lytically and one has to resort to numerical methods. A popular 
class of computational algorithms is the Monte Carlo family, which 
is particularly suitable to the broad and challenging problems of 
non-linear and non-Gaussian nature. The target distribution can be, 
for example, the posterior distribution of the unknowns or a pre-
dictive distribution of observations. Within the Monte Carlo-based 
methods, MCMC algorithms use correlated samples to approximate 
a target distribution [26–28]. MCMC techniques yield a Markov 
chain with a stationary distribution that coincides with the target. 
Thus, after a sufficient amount of iterations, the MCMC methods 
approximate the target distribution with a random measure com-
posed of generated samples with equal weights. In adaptive MCMC 
sampling, one also uses proposal functions and they may depend 
on already generated samples. The AIS has the same objective as 
MCMC but it operates with samples whose weights are all dif-
ferent. The difference in weights is due to the fact that with AIS 
the generated samples are always used in the estimation and are 
drawn by a proposal function different from the desired distribu-
tion. Some proposal functions are better than others and the main 
challenge lies in the construction of an appropriate proposal. With 
AIS, the aim is to implement importance sampling in an iterative 
manner, where one exploits the samples and weights of past iter-
ations in constructing improved importance functions.

PF is another Monte Carlo methodology that uses importance 
sampling [29]. With PF, the main objective is to track in time vari-
ous dynamic distributions of interest [7,30,31]. As pointed out, PF, 
like AIS, exploits importance sampling, but does not usually take 
advantage of iterative learning while it tracks its target distribu-
tions. Thus, in a nutshell, AIS shares important features with both 
MCMC sampling and PF. Like in adaptive MCMC sampling, it uses 
previous samples to construct better proposal functions, and like 
PF, it employs importance sampling to avoid generation of sam-
ples from infeasible distributions. Another advantage of the AIS 
approach (w.r.t. the MCMC techniques) is that it is easier to de-
sign schemes using a population of different proposal distributions 
(sharing information by the weighted samples).

The mathematical basics of AIS can be described as follows. 
Suppose that we want to approximate a target distribution p(x)
by a set of samples and weights. Here x ∈ R

dx is the unknown 
state of the system of dimension dx . This distribution is most often 
a posterior, p(x | y1:N y ), where yn ∈ R

dy represents observations 
with information about x, and y1:N y ≡ {y1, y2, · · · , yN y }, with N y

indicating the number of available observations.
First, we review the concept of importance sampling [20]. Let 

the samples used for approximation be drawn from p(x) itself and 
let them be denoted by x(m) , m = 1, 2, · · · , M , with M representing 
the number of samples that are generated. Then

pM(x) =
M∑

m=1

1

M
δ
(

x − x(m)
)

, (1)

where the approximating distribution, pM(x), is discrete and 
δ
(
x − x(m)

)
is the unit delta measure concentrated at x(m) . When it 

is difficult or impossible to draw samples from p(x), the alternative 
is to use a proposal function π(x), with a shape as close as pos-
sible to p(x) and support enclosing that of p(x). If x(m)

0 ∼ π
(m)
0 (x)

(where the subscript denotes the iteration), then the approxima-
tion of p(x) is

pM
0 (x) =

M∑
m=1

w(m)
0 δ

(
x − x(m)

0

)
, (2)

where w(m)
0 is the normalized importance weight obtained from

w(m)
0 = w̄(m)

0∑M
j=1 w̄( j)

0

, (3)

where

w̄(m)
0 =

p
(

x(m)
0

)
π

(m)
0

(
x(m)

0

) . (4)

The generation of samples from a proposal function and the as-
signment of weights is known as importance sampling. We note 
that the superscript in the proposal function indicates that for each 
sample generated, one can use a different proposal. The nature of 
this difference of proposal probability density functions (pdfs) can 
be in the type of distribution (e.g., some samples could be gen-
erated from a Gaussian, some from a mixture Gaussian, etc.) or in 
the parameters of the proposal (e.g., assuming a simple case where 
all samples are generated from Gaussians, those Gaussians could 
have different parameters depending on the particular sample.) 
In this section, for simplicity in notation, we relate the proposal 
distribution directly to the unknown variable of the system x. In 
general, and as seen in the next sections, the proposal may not 
only relate to the variable x but to other parameters.

The idea behind AIS is to use the random measure χ0 ={
x(m)

0 , w(m)
0

}M

m=1
for creating a better proposal function than π0(x)

(see Fig. 1 for a graphical description of the modus operandi of AIS 
in two iterations). If this new proposal function is π1(x), and it is 

used to obtain a new random measure χ1 =
{

x(m)
1 , w(m)

1

}M

m=1
, then 

the approximation of p(x) with the new set of samples is

pM
1 (x) =

M∑
w(m)

1 δ
(

x − x(m)
1

)
, (5)
m=1
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Fig. 1. The idea behind AIS with two iterations.

where the subscript of pM
1 (x) indicates the approximation of p(x)

at the first iteration. One can also combine the initial random mea-
sure χ0 with χ1 to improve the approximation (5), e.g., by

p̃M
1 (x) =

M∑
m=1

(
w̃(m)

0 δ
(

x − x(m)
0

)
+ w̃(m)

1 δ
(

x − x(m)
1

))
, (6)

where the new weights w̃(m)
0 and w̃(m)

1 are appropriately recom-
puted so that they all sum up to one, namely,

w̃(m)
0 = w̄(m)

0∑M
j=1 w̄( j)

0 + ∑M
j=1 w̄( j)

1

, and

w̃(m)
1 = w̄(m)

1∑M
j=1 w̄( j)

0 + ∑M
j=1 w̄( j)

1

. (7)

The process can obviously continue iteratively (in the sequel, 
the subscript i will denote iteration number and the symbol I will 
indicate the maximum number of iterations). In the second itera-
tion, one can use the random measure χ1 and create yet an even 
better proposal function. Or, one can use both measures χ0:1 (here, 
χ0:1 ≡ {χ0, χ1}) to obtain the new proposal function. The iterative 
process proceeds until a stopping condition is met. It is important 
to note that the samples from all the iterations can be used once 
their weights are properly computed. Finally, it is important to re-
mark that

Ẑ = 1

2M

⎛
⎝ M∑

j=1

w̄( j)
0 +

M∑
j=1

w̄( j)
1

⎞
⎠ ≈

∫
Rdx

p(x)dx, (8)

is an estimator of the normalizing constant of p(x).

3. State-of-the-art

The idea of importance sampling was proposed for the first 
time more than 50 years ago [32]. It was introduced in Bayesian 
inference in [33] and later developed in [34,35]. The concept of 
learning about the target distribution along with Monte Carlo sam-
pling was proposed in [36,37], and more recent efforts include
[22,38]. It is important to point out that learning from past sam-
ples has been explored in the MCMC sampling literature, where 
the main motivation has primarily been the development of MCMC 
methods for the local trap problem [27].

A resurgence of interest in AIS schemes happened after the 
publication of the population Monte Carlo (PMC) sampling method 
in [15,28]. It is based on representing the proposal functions by 
mixtures of kernels. The underlying idea is simple and flexible 
and several variants have been proposed. In particular, two general 
versions of PMC aiming at complete adaptation of the proposal 
functions, have received special attention. In one, the proposal 
functions are fit to the target distribution so that they minimize 
the variance or the Kullback–Leibler divergence [39]. In the other 
method, one updates the weights and parameters of the mixture 
distribution by using an entropy criterion [22]. In [40], a PMC 
method was applied to missing data problems, where a sequence 
of importance functions dependent on both the iteration and sam-
ple index was proposed. Additional applications of PMC sampling 
include the analysis of ion channels using a fixed dimension model 
[41], interpretation of static images in a robot vision setup [42], 
analysis of complex traits for phenotypic data interpretation of 
pedigreed populations [43], motif discovery for deciphering ge-
netic regulatory codes [44], and investigation of detection systems 
for biological threats [45]. Several other related works can be found 
in the literature [46–48]. For instance, in [48], the loss of diversity 
in the population due to the resampling step is reduced by ar-
tificially forcing a pre-defined amount of the highest importance 
weights to be equal.

Other variants of AIS schemes have been presented in the lit-
erature. Some approaches focus on the use of nonparametric mix-
ture distributions as proposal functions [49–52]. The number of 
components in the mixture varies with iterations according to cer-
tain statistical criteria. In many of these schemes, the new added 
mixands (i.e., a new component) are located and weighted by us-
ing the samples generated at the previous iteration [49,50]. Then, 
certain components are removed or replaced according to a resam-
pling step. The parameters of the components are adapted using 
global [49] or local [50] strategies. In other approaches, the optimal 
parameters of the components are obtained via empirical estima-
tion [51]. In [53], a strategy that initiates with a very large number 
of mixands is described. As the algorithm proceeds, some of the 
mixands are merged and some are removed using a clustering pro-
cedure. An alternative to this method is the incremental mixture 
importance sampling (IMIS) method. With IMIS, the proposal mix-
ture distribution is adapted by incrementally adding components 
[52] based on the highest importance weights from the previous 
iteration.

More recently, the idea of incremental mixtures has been pro-
moted by another AIS scheme, the adaptive multiple importance 
sampling (AMIS) method [14,23,54]. In AMIS, at a particular iter-
ation, only one proposal function is used to generate all samples. 
However, at each iteration the past and present weights are re-
computed by using the so-called deterministic mixture approach 
[55,56]. The mixture is composed by the present and all past pro-
posal distributions. Thus, a new component is incorporated in the 
mixture at each iteration (in this sense, it is incremental). Also, the 
parameters of the next iteration proposal are obtained by using 
all particles and weights up to that moment. It has been demon-
strated that the deterministic mixture approach stabilizes the it-
erative importance sampling estimator. Thus, AMIS often provides 
better performance than other techniques. For instance, it has been 
successfully applied to biological data analysis [57].

In the previous works, some elements of the mixture, e.g., 
weights or covariances, remain fixed, i.e., are not adapted. A com-
plete adaptation of a mixture of proposal distributions has been 
designed in [22], from the theoretical and practical point of view. 
In this case, the weights and parameters of each mixand are up-
dated in order to minimize the Kullback–Leibler divergence be-
tween the target and proposal distributions. Since the adaptation 
of weights and covariance matrices is in general critical for ad-
equate performance of the algorithms, other methods only adapt 
the location parameters [24], in order to provide a more robust 
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Table 1
Summary of the notation of the AIS methodology.

Indices Description Functions Description

i Index denoting the iteration of the algorithm p Target function
I Total number of iterations π Proposal function
m Index denoting the m-th sample q Mixand in the proposal π
M Total number of samples at each iteration w̄(m)

i Unnormalized weight of the m-th sample at the i-th iteration
ẅ(m)

i Unnormalized weight used in APIS
d Index denoting the d-th mixand w(m)

i Weight of the m-th sample, normalized considering the M samples drawn 
at the i-th iteration

D Total number of mixands in the proposal π w̃(m)
τ Weight of the m-th sample at the τ -th iteration (τ ≤ i), normalized 

considering all the samples drawn up to the i-th iteration
performance. With the adaptive population importance sampling 
(APIS) method [24,25], each component of the mixture can use 
different parameters as in PMC, but the parameters of a mixand 
are updated to reflect the local features of the target. The weights 
of the mixture remain the same, equal for all the mixands in its 
basic formulation (away from the 0 and 1 values, as suggested in 
[58]). APIS also takes advantage of the deterministic mixture ap-
proach [55,56] but with the population of proposal distributions at 
the same iteration, instead of creating a mixture among proposal 
distributions obtained at different time steps, as in AMIS. Finally, 
combinations of MCMC and importance sampling techniques have 
been studied to obtain further improved AIS methods. For instance, 
MCMC steps are used to accelerate the adaptation of the AIS tech-
nique [25,59] or, more generally, the MCMC outputs are used to 
build a proposal distribution for AIS estimation [60].

In general, the proof of consistency of the estimators obtained 
by the AIS schemes is based on the same arguments used for the 
standard importance sampling method [2,16]. In fact, the AIS es-
timator that is calculated at the last iteration of the method (I is 
the maximum number of iterations of the algorithm) can be in-
terpreted as a standard-static importance sampling estimator built 
using I different proposal distributions. The details of this analy-
sis can be found in [25] and Chapter 14 of [2]. The consistency 
of the method when the number of samples tend to infinity for 
a fixed number of iterations (M → ∞ with fixed I) is, in general, 
straightforward based on simple Monte Carlo arguments. However, 
the proof for an infinite number of iterations and a fixed num-
ber of samples (I → ∞ with fixed M) is more involved since the 
partial estimators at each iteration of the AIS scheme are usually 
biased (see discussion in [25]). The convergence of some specific 
AIS schemes like the AMIS have received special attention in [23]. 
There, the algorithm, which originally considered all samples from 
the past and current iterations for update of the proposal, was 
modified to facilitate the theoretical analysis and only the current 
samples at a particular iteration were used in the update of the 
proposal function. Some additional theoretical results can be found 
in [30,39].

4. AIS schemes

In this section, we first review the generic characteristics of the 
AIS methodology as well as its basic steps. Then, we provide details 
of four different implementations of AIS. In particular, we focus on 
the standard PMC algorithm [15], the AIS with mixture Gaussian 
proposals [22], the adaptive multiple importance sampling (AMIS) 
[14,23], and the adaptive population importance sampler (APIS) 
[24,25].

4.1. Outline of the general scheme

As indicated in Section 2, the objective of the AIS algorithms is 
the approximation of a target distribution, p(x), by a set of samples 
and weights. Since the samples cannot generally be drawn directly 
Fig. 2. Outline of the general AIS scheme with its main steps and the used notation.

from p(x), one uses a proposal function, π(x), to generate the sam-
ples and assigns them weights, which indicate the relevance of the 
samples to the approximation. The AIS methods are iterative and 
improve the proposal function with each iteration. We note that all 
methods reviewed in this paper assume parametric proposal func-
tions. Alternative schemes could be considered as is the case in 
[49–52], where nonparametric proposal pdfs are used. The main 
notation is summarized in Table 1 and a graphical representation 
of the general outline of the AIS methodology including the nota-
tion is provided in Fig. 2.

In general, at the i-th iteration, the AIS techniques, move from a 

random measure, χi−1 =
{

x(m)
i−1, w(m)

i−1

}M

m=1
, to a new random mea-

sure, χi , where the samples are generated from an improved pro-
posal constructed from χi−1 and the weights are properly updated. 
In particular, the generation of new samples is given by

x(m)
i ∼ π

(m)
i , m = 1, . . . , M, (9)

where π(m)
i is the proposal function for the m-th sample at the 

i-th iteration. It is in the construction of the proposal where the 
AIS algorithms are differentiated:

• Standard PMC [15]: Each sample is generated from a differ-
ent proposal of parameters updated from the previous itera-
tion and defined by the previous sample, i.e., x(m)

i ∼ π
(m)
i (x) =

qi,m

(
x|μ(m)

i−1,�
(m)
i−1

)
, where μ(m)

i−1 and �
(m)
i−1 denote the mean 

and covariance matrix defining the parametric distribution. 
Note that one can interpret that PMC uses a mixture of distri-
butions qi,m, i = 0, . . . , I , m = 1, . . . , M , where the selection of 
a particular mixand to draw one sample is deterministic (one 
sample is generated from each of the M proposal pdfs). This 
observation establishes an important connection with the rest 
of techniques analyzed below.
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• AIS with mixture Gaussian proposals [22]: There is one pro-
posal distribution from which all samples are generated. This 
function is a mixture Gaussian with D components of parame-
ters updated at each iteration. The m-th sample at the i-th it-
eration is generated by randomly selecting one of the mixands, 
i.e., x(m)

i ∼ π
(m)
i (x) = ∑D

d=1 αi−1,dqi,d(x | μi−1,d, �i−1,d), where 
αi−1,d , μi−1,d and �i−1,d denote the weight, mean and co-
variance matrix of the d-th component of the mixture. In the 
sequel, we also refer to this method as Mix-AIS.

• AMIS [14,23]: The M samples, at the i-th iteration, are gener-
ated using the same proposal function with parameters ob-
tained from all samples and weights up to that iteration, 
i.e., x(m)

i ∼ π
(m)
i (x) = qi (x|μi−1,�i−1), where μi−1 and �i−1

denote the mean and covariance matrix calculated at the 
(i − 1)-th iteration using all samples and weights. AMIS also 
exploits the deterministic mixture approach in the computa-
tion of the weights. At the i-th iteration, all iM samples up to 
that iteration, have been generated from the temporal mixture 

1
i+1

∑i
j=0 q j

(
x|μ j−1,� j−1

)
.

• APIS [24,25]: At each iteration, there are D proposal pdfs and 
the same number of samples is drawn from each of them, i.e., 
if one generates M samples, N = M

D ≥ 2 samples come from 
each of the proposal functions. Therefore, x(m)

i ∼ π
(m)
i (x) =

qi,d
(
x|μi−1,d,�i−1,d

)
, d =

⌊
m−1

N

⌋
+1, where μi−1,d and �i−1,d

denote the mean and covariance matrix of the d-th proposal 
and are updated using the samples generated from that pro-
posal. A useful interpretation is that APIS uses a mixture of 
proposal distributions, qi,d , where the selection of the mixand 
to draw the sample from is deterministic (N samples are gen-
erated from each of the D proposal pdfs such that ND = M).

For each of the previous variants of AIS, one needs to update 
the corresponding weights taking into account the considered pro-
posal pdf. In the next subsections we detail the specifics of each of 
the approaches. The main steps of all the schemes are:

Initialization: Obtain χ0 =
{

x(m)
0 , w(m)

0

}M

m=1
, from a prior distribu-

tion. This step also involves initialization of the parameters needed 
for the first proposal.

For i = 1 : I

1. Generate new samples: x(m)
i ∼ π

(m)
i (x), m = 1, . . . , M .

The way the proposal functions π(m)
i (x) are built distinguish 

the different approaches.
2. Calculate the unnormalized weights:

w̄(m)
i =

p
(

x(m)
i

)
π

(m)
i

(
x(m)

i

) , m = 1, . . . , M. (10)

As seen later, the unnormalized weights are usually calculated 
as the ratio between the target and the proposal. The AMIS 
algorithm evaluates the weights by considering the cumula-
tive proposal resulting from the addition of all proposal pdfs 
up to the current iteration. In addition, it also recalculates the 
weights of samples from previous iterations in the same way. 
The APIS algorithm contemplates two different unnormalized 
weights: on one hand, the ratio between the target and the 
proposal is considered, and on the other hand, the ratio be-
tween the target and the composite proposal resulting from 
the mixture of all individual proposals is calculated. The for-
mer is used for adaptation of the next iteration parameters of 
each proposal pdf, while the later is used for approximation of 
the target distribution.
Table 2
Expressions of the proposal and number of mixands per proposal for the different 
AIS implementations.

Method Proposal pdfs D

PMC π
(m)
i (x) = qi,m

(
x|μ(m)

i−1,�
(m)
i−1

)
D = M

Mix-AIS π
(m)
i (x) = ∑D

d=1 αi−1,dqi,d(x | μi−1,d,�i−1,d) D

AMIS π
(m)
i (x) = qi (x | μi−1,�i−1) D = 1

APIS π
(m)
i (x) = qi,d

(
x|μi−1,d,�i−1,d

)
, d =

⌊
m−1

N

⌋
+ 1 D = M

N

3. Normalize the weights: Two different types of normalization 
are considered:
(a) For adaptation of the necessary parameters for the next 

iteration proposal

w(m)
i = w̄(m)

i∑M
j=1 w̄( j)

i

, m = 1, . . . , M. (11)

The standard PMC also uses these weights for the re-
sampling operation. In PMC the discrete random measure 
degenerates quickly and only few samples are assigned 
meaningful weights. This degradation leads to a deterio-
rated performance of the method. Resampling eliminates 
sampling with small weights and replicates particles with 
large weights [2,16,61,62]. It is important to note that the 
AMIS approach does not normalize the weights using the 
previous expression but the next one. This is due to the 
cumulative nature of the algorithm, which constructs the 
proposal pdfs by updating the parameters with the sam-
ples from all previous iterations. Therefore, the weights 
used for adaptation of these parameters are normalized 
through all the iterations.

Using the generated samples and the calculated weights, 
one obtains the next random measure, χi ={

x(m)
i , w(m)

i

}M

m=1
.

(b) For approximation of the target distribution as well as cal-
culation of point estimates of unknowns

w̃(m)
τ = w̄(m)

τ∑i
ρ=0

∑M
j=1 w̄( j)

ρ

τ = 0, . . . , i, m = 1, . . . , M. (12)

This is a global normalization across all weights from pre-
vious and current iterations.

4. Approximate the target distribution: To achieve this, one uses 
all samples and globally normalized weights up to the present 
iteration,

p̃M
i (x) =

M∑
m=1

(
w̃(m)

0 δ
(

x − x(m)
0

)
+ w̃(m)

1 δ
(

x − x(m)
1

)
+ . . .

+ w̃(m)
i δ

(
x − x(m)

i

))
. (13)

5. Adapt the parameters for the next proposal: Depending on the 
version of the AIS method, one has to update the parame-
ters for the next iteration proposal accordingly. Details of this 
adaptation are provided in the next subsections.

Fig. 2 illustrates the general AIS scheme and Table 2 compares the 
expressions of the proposal pdfs, π(m)

i , as well as the number of 
mixands in the proposal pdfs used by each of the considered AIS 
implementations.
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4.2. Standard PMC

Here we detail the original PMC sampling algorithm proposed 
in [15]. We consider that at the beginning of the i-th itera-
tion, the random measure from the (i − 1)-th iteration, χi−1 ={

x(m)
i−1, w(m)

i−1

}M

m=1
, is available. To obtain the new random mea-

sure, the m-th sample is propagated from a proposal distribution, 
π

(m)
i (·), described by a set of parameters obtained from m-th sam-

ple at the previous iteration, i.e., π(m)
i (x) = qi,m

(
x(m)

i |μ(m)
i−1,�

(m)
i−1

)
. 

This implies that at each iteration there are M different proposal 
pdfs. We note that as described in [15] all the M proposals are 
of the same distribution type, e.g., all Gaussians or all Student’s t-
distributions. However, the parameters of those proposal pdfs are 
different in that they come from different parental samples. We 
also note that the proposals do not change their type from iter-
ation to iteration. In a more general setting, one could have the 
M proposal pdfs being of different distribution types and chang-
ing their types at each iteration. The proposals considered in [15]
are characterized by their means and covariances matrices, i.e., the 
i-th proposal depends on μ(m)

i−1 and �(m)
i−1 from the previous itera-

tion.
Table 3 summarizes the algorithm. Note that, at each iteration, 

the M samples obtained from the PMC method can be interpreted 
to come from a mixture 1

M

∑M
m=1 qi,m

(
x | μ(m)

i−1,�
(m)
i−1

)
, where ex-

actly one sample is generated from each of the mixands. However, 
unlike AMIS and APIS, PMC does not take advantage of this con-
sideration. This is perceived in the calculation of the weights since 
the corresponding weight for each sample only reflects the pro-
posal that the sample was drawn from and not the entire mix-
ture.

4.3. AIS with mixture Gaussian proposals

In the PMC sampling algorithm described in [22], the pro-
posal distribution at the i-th iteration is the same for all par-
ticles and is given by a mixture of D Gaussians, i.e., π(m)

i (x) =∑D
d=1 αi−1,dqi,d(x | μi−1,d, �i−1,d), where qi,d

(
x | μi−1,d,�i−1,d

) =
N

(
x | μi−1,d,�i−1,d

)
is the d-th mixand whose parameters as well 

as its weight in the mixture are updated at each iteration by us-
ing the generated samples and calculated weights. The generation 
of samples at the i-th iteration involves the selection of a compo-
nent of the mixture according to the weights αi−1,d , d = 1, . . . , D . 
A sort of resampling is therefore inherent to the generation step. 
Table 4 summarizes the algorithm. We note that the subscript −1
used for initialization of the algorithm refers to the parameters 
of the prior distribution used to obtain the first set of samples. 
It is important to remark that the adaptation of the parameters 
in Table 4 is only valid if all the mixture components are Gaus-
sians. In other cases, an additional theoretical derivation is needed 
[22].

4.4. AMIS

In the AMIS approach [14,23] the proposal functions are incre-
mental in the sense that at each iteration the new proposal is char-
acterized by parameters that are obtained using all samples and 
weights from previous iterations. This proposal is used for gener-
ation of all samples, i.e., π(m)

i (x) = qi (x|μi−1,�i−1) , ∀m. Also, at 
each iteration the weights of all samples (current and past) are 
computed (or recomputed in the case of past samples) taking into 
account the incremental nature of the proposal, i.e., the weights 
measure the adequacy of the samples with respect to the com-
posite distribution that accounts for all iterations proposal pdfs up 
Table 3
Standard PMC.

Assume: χ0 =
{

x(m)
0 , w(m)

0 = 1
M

}M

m=1
, where x(m)

0 , m = 1, . . . , M were obtained 
from a prior distribution.
Set: μ

(m)
0 = x(m)

0 m = 1, . . . , M .

�
(m)
0 = �(m) m = 1, . . . , M , where �(m) is the predefined covariance ma-

trix of the prior.

For i = 1, . . . , I

1. Generate new samples: x(m)
i ∼ π

(m)
i (x) = qi,m

(
x|μ(m)

i−1,�
(m)
i−1

)
, 

m = 1, . . . , M .
2. Calculate the unnormalized importance weights:

w̄(m)
i =

p
(

x(m)
i

)
qi,m

(
x(m)

i |μ(m)
i−1,�

(m)
i−1

) , m = 1, . . . , M.

3. Normalize the weights:
(a) For resampling as well as adaptation of the necessary parameters for 

the next iteration proposal

w(m)
i = w̄(m)

i∑M
j=1 w̄( j)

i

, m = 1, . . . , M.

Obtain: χi =
{

x(m)
i , w(m)

i

}M

m=1
.

(b) For approximation of the target distribution as well as calculation of 
point estimates of unknowns

w̃(m)
τ = w̄(m)

τ∑i
ρ=0

∑M
j=1 w̄( j)

ρ

τ = 0, . . . , i, m = 1, . . . , M.

4. Approximate the target distribution:

p̃M
i (x) =

M∑
m=1

(
w̃(m)

0 δ
(

x − x(m)
0

)
+ w̃(m)

1 δ
(

x − x(m)
1

)
+ . . .

+ w̃(m)
i δ

(
x − x(m)

i

))
.

5. Resample by replication of the most adequate samples according to the 
weights. Obtain a new set of samples 

{
x̄(m)

i

}M

m=1
for adaptation of the nec-

essary parameters for the next iteration proposal.
6. Adapt the parameters for the next proposal:

μ
(m)
i = x̄(m)

i , m = 1, . . . , M,

�
(m)
i = �

(m)
i−1 m = 1, . . . , M.

to that iteration, 1
i+1

∑i
j=0 q j

(
x | μ j−1,� j−1

)
. This mixture, with 

increasing number of components, can be considered as the com-
plete reference proposal pdf for weight calculation used in AMIS. 
All the samples from all the iterations as well as the properly re-
computed and normalized weights are used for adjustment of the 
parameters for the next iteration proposal. Table 5 summarizes the 
algorithm.

4.5. APIS

The algorithm proposed in [24,25] uses D proposal functions 
at each iteration to obtain the M samples, i.e., it generates N =
M
D ≥ 2 samples per proposal function (N ∈ N). Namely, the to-

tal number of samples per iteration is M = ND. Since N samples 
are generated deterministically from each mixand at each itera-
tion, one can also consider that the M = ND samples drawn at 
the i-th iteration are distributed according to the mixture pdf 
1
D

∑D
d=1 qi,d

(
x | μi−1,d,�i−1,d

)
. This mixture pdf is considered as 

the proposal pdf from which samples are obtained when the 
weights are calculated.
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,

Table 4
AIS with mixture Gaussian proposals.

Assume: χ0 =
{

x(m)
0 , w(m)

0 = 1
M

}M

m=1
, where x(m)

0 , m = 1, . . . , M were obtained 
from a prior distribution.

Set: ρ
(m)

0,d = α−1,dq0,d

(
x(m)

0 |μ−1,d ,�−1,d

)
∑D

d=1 α−1,dqi,d(x|μ−1,d ,�−1,d)
, d = 1, . . . , D, m = 1, . . . , M ,

α0,d = 1
M

∑M
m=1 ρ

(m)

0,d , d = 1, . . . , D ,

μ0,d = 1
Mα0,d

∑M
m=1 ρ

(m)

0,d x(m)
0 , d = 1, . . . , D ,

�0,d = 1
Mα0,d

∑M
i=1 ρ

(m)

0,d

(
x(m)

0 − μ0,d

)(
x(m)

0 − μ0,d

)�
d = 1, . . . , D .

For i = 1, . . . , I

1. Generate new samples: x(m)
i ∼ π

(m)
i (x) = ∑D

d=1 αi−1,dqi,d(x |
μi−1,d, �i−1,d), m = 1, . . . , M , with qi,d(x | μi−1,d, �i−1,d) =
N

(
x | μi−1,d,�i−1,d

)
.

2. Calculate the unnormalized importance weights:

w̄(m)
i =

p
(

x(m)
i

)
∑D

d=1 αi−1,dqi,d(x | μi−1,d,�i−1,d)
, m = 1, . . . , M.

3. Normalize the weights:
(a) For adaptation of the necessary parameters for the next iteration pro-

posal

w(m)
i = w̄(m)

i∑M
j=1 w̄( j)

i

, m = 1, . . . , M.

Obtain: χi =
{

x(m)
i , w(m)

i

}M

m=1
.

(b) For approximation of the target distribution as well as calculation of 
point estimates of unknowns

w̃(m)
τ = w̄(m)

τ∑i
ρ=0

∑M
j=1 w̄( j)

ρ

τ = 0, . . . , i, m = 1, . . . , M.

4. Approximate the target distribution:

p̃M
i (x) =

M∑
m=1

(
w̃(m)

0 δ
(

x − x(m)
0

)
+ w̃(m)

1 δ
(

x − x(m)
1

)
+ . . .

+ w̃(m)
i δ

(
x − x(m)

i

))
.

5. Adapt the parameters of each of the mixands of the next iteration mixture 
Gaussian proposal:

ρ
(m)

i,d =
αi−1,dqi,d

(
x(m)

i | μi−1,d,�i−1,d

)
∑D

d=1 αi−1,dqi,d(x | μi−1,d,�i−1,d)
, d = 1, . . . , D, m = 1, . . . , M

αi,d =
M∑

m=1

w(m)
i ρ

(m)

i,d , d = 1, . . . , D,

μi,d = 1

αi,d

M∑
m=1

w(m)
i ρ

(m)

i,d x(m)
i , d = 1, . . . , D,

�i,d = 1

αi,d

M∑
i=1

w(m)
i ρ

(m)

i,d

(
x(m)

i − μi,d

)(
x(m)

i − μi,d

)�
d = 1, . . . , D.

The parameters of the proposal pdfs for the next iteration are 
updated using only the N samples generated from that particu-
lar proposal, qi,d . Note that it is assumed that D ≤ M and M is 
a multiple of D . The weights used for the adaptation procedure, 
w̄(m)

i , are calculated as the ratio between the target and the pro-
posal used for generation of the samples (i.e., considering only 
one mixand qi,d in the denominator). However, the weights used 
for approximation of the target distribution, ẅ(m)

i , account for the 
complete mixture as proposal. In the particular case D = 1, APIS 
results into a standard AIS, which only updates the means of the 
proposal pdfs. Table 6 summarizes the algorithm. We remark that 
the operation 
y�, where y is an arbitrary argument, denotes the 
largest integer not greater than y.
Table 5
AMIS.

Assume: χ0 =
{

x(m)
0 , w(m)

0 = 1
M

}M

m=1
, where x(m)

0 , m = 1, . . . , M were obtained 
from a prior distribution.
Set: μ0 = 1

M

∑M
m=1 x(m)

0 .
�0 = �, where � is a predefined covariance matrix of the prior.

For i = 1, . . . , I

1. Generate new samples: x(m)
i ∼ π

(m)
i (x) = qi (x | μi−1,�i−1), 

m = 1, . . . , M .
2. Calculate the unnormalized importance weights:

w̄(m)
i =

p
(

x(m)
i

)
1

i+1

∑i
j=0 q j

(
x(m)

j | μ j−1,� j−1

) , m = 1, . . . , M,

and recalculate the previous ones:

w̄(m)
τ =

p
(

x(m)
τ

)
1

i+1

∑i
j=0 q j

(
x(m)
τ | μ j−1,� j−1

) , τ = 0, . . . , i − 1,

m = 1, . . . , M.

3. Normalize the weights (for both adaptation of the necessary parameters 
for the next iteration proposal and approximation of the target distribu-
tion):

w(m)
τ = w̄(m)

τ∑i
ρ=0

∑M
j=1 w̄( j)

ρ

τ = 0, . . . , i, m = 1, . . . , M.

Obtain: χi =
{

x(m)
i , w(m)

i

}M

m=1
.

4. Approximate the target distribution:

p̃M
i (x) =

M∑
m=1

(
w(m)

0 δ
(

x − x(m)
0

)
+ w(m)

1 δ
(

x − x(m)
1

)
+ . . .

+ w(m)
i δ

(
x − x(m)

i

))
.

5. Adapt the parameters for the next proposal:

μi =
M∑

m=1

i∑
τ=0

w(m)
τ x(m)

τ ,

�i =
M∑

m=1

i∑
τ=0

w(m)
τ

(
x(m)
τ − μτ

)(
x(m)
τ − μτ

)�
.

4.6. Computational cost

The computational cost of the AIS techniques is determined by 
the total number of samples drawn at each iteration, M , the num-
ber of proposal functions used for generation of samples, D , and 
the total number of iterations, I . We remark that I is also the num-
ber of adaptations of each proposal function. We define the total 
number of samples used for estimation of the target distribution 
as MI = M(I + 1), where we have taken into account the samples 
obtained at the initialization step of the algorithm.

In this paper, we compare the complexity of the different meth-
ods discussed in the previous section in terms of the computa-
tional cost associated to the calculation of the weights. Clearly, 
there are other operations which affect the computational cost 
such as the generation of samples, the update of parameters for 
the next iteration proposal, or the resampling step in the standard 
PMC. For the generation of samples, and given that all algorithms 
are assumed to use Gaussian distributions, we consider that they 
have the same computational complexity for this operation with 
the disclaimer that, in the case of the AIS with mixture Gaussian 
proposal pdfs, there is need for generation of a random number 
per sample to choose the component of the mixture to draw the 
sample from. The update of parameters can be assumed equivalent 
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Table 6
APIS.

Assume: χ0 =
{

x(m)
0 , w(m)

0 = 1
M

}M

m=1
, where x(m)

0 , m = 1, . . . , M were obtained 
from a prior distribution.

Set: μ0,d = 1
M

∑N
n=1 x(d−1)N+n

0 , d = 1, . . . , D .
�0,d = �d , d = 1, . . . , D , where �d is a predefined covariance matrix of the 

prior.

For i = 1, . . . , I

1. Generate new samples: x(m)
i ∼ π

(m)
i (x) = qi,d

(
x|μi−1,d,�i−1,d

)
, 

d =
⌊

m−1
N

⌋
+ 1, m = 1, . . . , M .

2. Calculate the unnormalized importance weights:
(a) For adaptation of the necessary parameters for the next iteration pro-

posal

w̄(m)
i =

p
(

x(m)
i

)
qi,d

(
x(m)

i |μi−1,d,�i−1,d

) , d =
⌊

m − 1

N

⌋
+ 1,

m = 1, . . . , M.

(b) For approximation of the target distribution as well as calculation of 
point estimates of unknowns

ẅ(m)
i =

p
(

x(m)
i

)
1
D

∑D
d=1 qi,d

(
x(m)

i |μi−1,d,�i−1,d

) , m = 1, . . . , M.

3. Normalize the weights:
(a) For adaptation of the necessary parameters for the next iteration pro-

posal

w(m)
i = w̄(m)

i∑d+N
j=d+1 w̄( j)

i

, d =
⌊

m − 1

N

⌋
N, m = 1, . . . , M.

Obtain: χi =
{

x(m)
i , w(m)

i

}M

m=1
.

(b) For approximation of the target distribution as well as calculation of 
point estimates of unknowns

w̃(m)
τ = ẅ(m)

τ∑i
ρ=0

∑M
j=1 ẅ( j)

ρ

τ = 0, . . . , i, m = 1, . . . , M.

4. Approximate the target distribution:

p̃M
i (x) =

M∑
m=1

(
w̃(m)

0 δ
(

x − x(m)
0

)
+ w̃(m)

1 δ
(

x − x(m)
1

)
+ . . .

+ w̃(m)
i δ

(
x − x(m)

i

))
.

5. Adapt the parameters for the next proposal:

μi,d =
N∑

n=1

w(d−1)N+n
i x(d−1)N+n

i , d = 1, . . . , D,

�i,d = �i−1,d d = 1, . . . , D.

in complexity for all methods and is more critical for large val-
ues of M , D and I . Here, for simplicity, we do not consider them. 
The same holds for the resampling step of the PMC, since it will 
depend on the specific type of resampling and will be ignored to 
make the comparison more straightforward.

Table 7 shows the number of operations needed for calculation 
of the weights for each of the considered methods. This calculation 
corresponds to obtaining the ratio of target distribution to the pro-
posal distribution. It is determined at each iteration and for each 
generated sample (we note that AMIS also recomputes at each it-
eration the weights corresponding to the previous samples). There-
fore, the table reflects the total number of evaluations of the target 
and proposal pdfs for the different techniques and the overall com-
plexity is the result of the addition of both numbers. For all the 
methods, the number of target evaluations is MI = M(I + 1), i.e., 
for each sample at each iteration we evaluate the target once. The 
evaluation of the denominator varies with the considered method. 
The standard PMC appears as the lightest algorithm and the num-
ber of evaluations of the proposal linearly grows with D (or M , 
which coincide in this case) and I . In this case, there is one pro-
posal per sample that is evaluated at each iteration. In the AIS with 
mixture Gaussian proposals the evaluation of the denominator for 
a particular sample at a given iteration takes into account the D
components of the mixture and therefore the number of proposal 
functions that must be evaluated at each step is proportional to D . 
The same argument holds for APIS, where the calculation of the 
weights reflects the appropriateness of the sample to the mixture 
of D components. Finally, for the AMIS, the computational load in-
creases per iteration, since the evaluation of the denominator takes 
into account the adequacy of the samples to all the previous pro-
posal pdfs and the current one. In addition, one also recalculates 
all the previous weights. This latter operation involves evaluation 
of the new proposal with respect to all old samples (one assumes 
that evaluations of previous proposals are stored and no recalcula-
tion is needed). Therefore, in AMIS, it is computationally expensive 
to adapt several times the proposal function, i.e., large values of I
increase its complexity.

5. Examples

In this section we provide computer simulation results corre-
sponding to three different problems. Namely, we first discuss the 
well known “banana-shaped” distribution problem [17] as proof of 
concept. Then, we consider a high-dimensional setting with a mul-
timodal target distribution, and finally we discuss an example of an 
AR model in a non-Gaussian noise scenario.

5.1. Banana-shaped distribution

We consider as target distribution the bi-dimensional “banana-
shaped” distribution [17], which is a benchmark function in the 
literature due to its nonlinear nature. Mathematically, it is ex-
pressed as

p(x1, x2) ∝ exp

(
− 1

2η2
1

(
4 − Bx1 − x2

2

)2 − x2
1

2η2
2

− x2
2

2η2
3

)
, (14)

where, in this case, we set B = 10, η1 = 4, η2 = 5 and η3 = 5.
The objective is to estimate the expected value E[X], where X =
[X1, X2] ∼ p(x1, x2), by applying different Monte Carlo approx-
imations. We can approximately obtain the true value E[X] ≈
[−0.4845, 0]� using an exhaustive deterministic numerical method 
(with an extremely thin grid), in order to obtain the mean square 
error (MSE) for comparison of the standard PMC, the AIS with mix-
ture Gaussian proposal pdfs, the AMIS and the APIS (labeled in the 
figures and referred in this section to as PMC, Mix-AIS, AMIS, and 
APIS, respectively).

For simplicity, we consider Gaussian proposal distributions for 
all the algorithms. The initialization is performed by randomly 
drawing the parameters of the Gaussians, with the mean of the 
j-th prior given by μ−1, j ∼ U([−6, 3] × [−4, 4]) and its covari-
ance matrix given by �−1, j = [σ 2

j,1 0; 0 σ 2
j,2]� . We note that 

the subscript −1 indicates that the distribution is a prior and the 
subscript j denotes the mixand in the initial mixture (i.e., in stan-
dard PMC we have M priors, one per sample; in Mix-AIS we have 
D components of the mixture; in AMIS we have one proposal; and 
in APIS we have D proposal pdfs). We contemplate two cases: 
an isotropic setting where σ j,1 = σ j,2 = σ ∈ {1, 2, . . . , 10}, and an 
anisotropic case with random selection of the parameters to test 
the robustness of the methods and where σ j,1 ∼ U([1, 20]) and 



44 M.F. Bugallo et al. / Digital Signal Processing 47 (2015) 36–49
Table 7
Computational cost: Total number of target and proposal evaluations when drawing M samples per iteration and after I iterations.

Method M D Target evaluations Proposal evaluations

PMC M = D D ≥ 2 M(I + 1) = D(I + 1) = MI M(I + 1) = D(I + 1) = MI

AIS with mixture Gaussians M D M(I + 1) = MI MD(I + 1) = MI D
AMIS M D = 1 M(I + 1) = MI M

∑M
i=0(2i + 1) = M(I + 1)2 = MI (I + 1)

APIS M = ND D ≤ M
2 M(I + 1) = ND(I + 1) = MI MD(I + 1) = ND2(I + 1) = MI D

Table 8
Bi-dimensional banana-shaped distribution example: Best and worst results in terms of MSE, obtained with the different techniques for different values of σ (Test 1). The 
smallest MSE for each σ is boldfaced.

Algorithm σ = 0.5 σ = 1 σ = 2 σ = 3 σ = 5 σ = 10 σ = 70 σi, j ∼ U([1,20])
PMC Worst 0.0670 0.0461 0.0209 0.0093 0.0055 0.0072 9.4749 0.1065

Best 0.0210 0.0164 0.0069 0.0016 0.0015 0.0011 0.0262 0.0026

Mix-AIS Worst 3.5772 0.0113 0.0044 0.0066 0.0174 0.0267 0.0913 0.0103
Best 0.0092 0.0020 0.0018 0.0035 0.0034 0.0055 0.0138 0.0025

AMIS Worst 0.0040 0.0039 0.0040 0.0016 0.0011 0.0012 0.0035 0.0013
Best 0.0023 0.0028 0.0023 0.0009 0.0003 0.0004 0.0023 0.0007

APIS Worst 0.0443 0.0437 0.0013 0.0007 0.0150 0.2486 13.7161 0.0762
Best 0.0051 0.0001 0.0002 0.0001 0.0002 0.0006 0.0361 0.0004
σ j,2 ∼ U([1, 20]). Recall that the standard PMC and the APIS do 
not adapt the covariance matrices along the iterations but consider 
them fixed.

For each of the algorithms, at each iteration, M samples are 
generated. We run three different experiments:

Test 1: Fixed total number of samples MI : We keep fixed the total 
number of samples MI = M(I + 1) = 2 · 105 (namely, the 
total number of generated samples and evaluation of the 
target) and vary the value of σ . Different combinations of 
parameters are examined:
– For PMC: M ∈ {50, 100, 103, 5 · 103} and I = 2·105

M . Note 
that D = M in the basic PMC.

– For Mix-AIS: M ∈ {100, 200, 103, 2 · 103, 5 · 103}, I = 2·105

M
and D ∈ {10, 50, 100}.

– For AMIS: M ∈ {500, 103, 2 · 103, 5 · 103, 104} and I =
2·105

M . Recall that D = 1 in AMIS.

– For APIS: M ∈ {100, 200, 103, 2 ·103, 5 ·103}, I = 2·105

M and 
D ∈ {50, 100}.

The parameter N for the APIS method is set such that 
N = M

D ≥ 2. The range of values of the parameters are cho-
sen, after a preliminary study, in order to obtain the best 
performance from each technique.

Test 2: Fixed M and σ , varying I : We set M = 103 and σ = 5. The 
total number of samples MI = M(I +1) is changed depend-
ing on the value of I , which represents the total number of 
adaptation steps of the algorithms.

Test 3: Fixed I and σ , varying M: We set I = 40 and σ = 5. The total 
number of samples MI = M(I +1) is changed depending on 
the value of M , which represents the number of samples 
generated at each iteration.

For Test 2 and Test 3, we set D = 100 (the number of proposals, 
or, what is the same, components in the proposal) for the Mix-AIS 
and the APIS schemes. We recall that, in Mix-AIS and AMIS, the 
covariance matrices are also updated during the adaptation, and 
therefore the value σ for these methods only represents the initial 
parameters.

The results are averaged over 500 independent simulations, for 
each combination of parameters. Table 8 shows the smallest and 
highest MSE values obtained in the estimation of the expected 
value of the target, averaged between the two components of E[X], 
achieved by the different methods in the first experiment Test 
1. The smallest MSE in each column (each σ ) is boldfaced. The 
log-MSEs as a function of σ are shown in Figs. 3(a)–(b), while 
Figs. 3(c)–(d) show the log-MSE as function of I (Test 2) and of M
(Test 3), respectively. Finally, Fig. 4 displays the final configurations 
of the means for the different algorithms. Note that for the Mix-
AIS and AMIS the covariance matrices are also adapted and the 
circles show approximately 85% of probability mass. In this exam-
ple, AMIS and APIS provide the best results. AMIS works better 
starting with larger initial parameters (since AMIS adapts the vari-
ances as well), whereas APIS prefers smaller initial parameters. In 
general, APIS needs to tune the parameter N = M

D as function of 
the variance σ . For instance, with σ = 70 the results show that 
a larger N is necessary. However, due to this additional degree of 
freedom compared to the standard PMC, APIS is able to reach good 
performance.

5.2. Multimodal target distribution

In this section, we consider a high-dimensional multimodal dis-
tribution, x ∈ R

10, defined as mixture of three multivariate Gaus-
sians

p(x) ∝ 1

3

3∑
n=1

N (x | νn,�n), (15)

with νn = [νn,1, . . . , νn,10]� representing the 10-dimensional vec-
tor of means corresponding to the n-th component in the multi-
variate distribution and �n = σnI10, n = 1, 2, 3, denoting the cor-
responding 10-dimensional vector of covariance matrices, where 
I10 is the 10 × 10 identity matrix. We set ν1, j = 6, ν2, j = −5
with j = 1, . . . , 10, and ν3 = [1, 2, 3, 4, 5, 5, 4, 3, 2, 1]� . Moreover, 
we set σn = 3, for all n = 1, 2, 3. For this target distribution p(x), 
one can analytically calculate the expected value, which is given 

by E[X] =
[

2
3 ,1, 4

3 , 5
3 ,2,2, 5

3 , 4
3 ,1, 2

3

]�
, where X ∼ p(x).

As in the previous example, we consider Gaussian proposal 
functions for all the compared methods. The initialization is per-
formed by randomly drawing the means of the Gaussians, with 
the mean of the j-th pdf given by μ−1,d ∼ U([−10 × 10]10), 
d = 1, . . . , D . We note that, unlike the previous example, this is 
a good initialization since the hyper-rectangle [−10 × 10]10 con-
tains all the modes of the target distribution. We also use different 
initial covariance matrices, with the one corresponding to the d-th 
proposal pdf being, �−1,d = σ I10 and σ ∼ U([1, 10]).

We test different combinations of parameters keeping the to-
tal number of used samples fixed, MI = M(I + 1) = 4 · 105. We 
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Fig. 3. Bi-dimensional banana-shaped distribution example: Log-MSE of the different algorithms (triangles: PMC; x-mark: Mix-AIS; squares: AMIS; circles: APIS): (a) Best 
results for Test 1; (b) Worst results for Test 1 (as a function of σ ); (c) Test 2 (as a function of I); (d) Test 3 (as a function of M).

Fig. 4. Bi-dimensional banana-shaped distribution example: Final configurations of the location parameters (means) of the proposal distributions. The Mix-AIS and AMIS 
techniques also adapt the covariance matrices (the circles show approximately 85% of the probability mass).
evaluate different values of M , M ∈ {100, 200, 500, 103, 2 · 103, 5 ·
103, 104, 2 · 104, 4 · 104, 105}, and as a consequence, I = 4·105

M .
We recall that D = M in PMC and D = 1 in AMIS. For the Mix-

AIS and APIS methods we use D ∈ {10, 100, 200}. The parameter N
for APIS is set to N = ⌊ M

D

⌋ ≥ 2. We run 500 independent simula-
tions and compute the MSE of E[X] (we average the MSEs of each 
component). The worst, the best and the averaged results in terms 
of MSE are shown in Table 9. As seen, for a multimodal target if a 
good initialization is used, the standard PMC obtains better perfor-
mance than in the previous example, providing the minimum MSE. 
APIS also shows good performance achieving the best averaged re-
sults. APIS gets its worst result in the extreme case N = M
D = 2

(smallest possible value). AMIS suffers from the multimodal sce-
nario since it often gets trapped in a specific mode.

Finally, Fig. 5 depicts a particular bi-dimensional slice of the 
target pdf (with x = [x1, . . . , x10]� ∈ R

10), together with the last 
configurations of the location parameters (means) of the proposal 
pdfs for PMC and APIS in one specific run. The slice is a function of 
x1 and x10, and it is obtained keeping fixed the other variables as 
x2:5 = −9.85, x6:9 = 8.5. Moreover, in these plots, we set D = 200
for both, μ−1,d ∼ U([−6 × 6]10) (initial means, d = 1, . . . , D), σ ∼
U([1, 6]), and I = 2·105

(in APIS, M = ND). It is clear that the PMC 
M
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Fig. 5. Multimodal target distribution example (x ∈ R
10): (a) Bi-dimensional slice of the multimodal target pdf as a function of x1 and x10 while fixing x2:5 = −9.85 and 

x6:9 = 8.5; (b) Final configuration of the location parameters (means) of the proposal pdfs for PMC; and (c) Final configuration of the location parameters (means) of the 
proposal pdfs for APIS.
Table 9
Multimodal target distribution example (x ∈ R

10): The worst, best and averaged 
results in terms of MSE for the different techniques and after testing several com-
binations of parameters. The smallest MSE for each row is boldfaced.

Results PMC Mix-AIS AMIS APIS

Worst 16.05 16.97 21.07 32.51
Best 0.0858 7.68 13.70 0.3857
Average 7.52 10.92 16.92 2.82

fails in detecting the two modes while APIS is able to lock both of 
them (recall that is a slice of a pdf in R10).

5.3. AR filters with non-Gaussian noise

In this example, we consider the use of an autoregressive (AR) 
model contaminated by a non-Gaussian noise. This type of filters 
are often used for modeling financial time series, where the noise 
is assumed to follow the so-called generalized hyperbolic distribution
[63,64]. Namely, we consider the AR filter

yk =
R∑

r=1

xr yk−r + uk, k = 1, . . . , K , (16)

where uk represents a heavy-tailed driving noise following a gen-
eralized hyperbolic distribution

uk ∼ p(u) ∝ eβ(u−μ)
B

λ− 1
2

(
α

√
δ2 + (u − μ)2

)
(√

δ2 + (u − μ)2
) 1

2 −λ
, (17)

with Bλ denoting the modified Bessel function of the second kind 
[65]. We set α = 2, β = 1, λ = 0.5, μ = −1, and δ = 1. In the next 
two subsections, we study two different cases separately, corre-
sponding to R = 4 and R = 30, respectively.

5.3.1. Case R = 4
We synthetically generate K = 200 observations, {yk}K

k=1,1 set-
ting x = [x1, x2, x3, x4]� = [0.5, 0.1, −0.8, 0.1]� and yr = 0 for 
r = 1, 2, 3, 4. Assuming improper uniform priors over the coef-
ficient, the objective is to approximate the posterior of vector 
x = [x1, x2, x3, x4]� . We note that with K = 200, the target poste-
rior is quite sharp and concentrated around the real values xi , i =
1, 2, 3, 4, thus we assume the vector x = [0.5, 0.1, − 0.8, 0.1]�
as the true expected value of the posterior.

1 For simulation of i.i.d. samples of the generalized hyperbolic noise, we have 
applied a fast and efficient MCMC technique (the FUSS algorithm [66]) drawing 
samples from univariate distributions. After few iterations, the resulting samples 
are roughly independent.
Table 10
AR model with non-Gaussian noise example with R = 4 unknown coefficients (i.e., 
x ∈ R

4): The worst, best and averaged results in terms of MSE for the different 
techniques and after testing several combinations of parameters. The smallest MSE 
for each row is boldfaced.

Results PMC Mix-AIS AMIS APIS MH

Worst 10.57 20.23 0.7141 0.0702 0.3021
Best 0.0235 0.1266 0.3492 0.0539
Average 2.054 5.207 0.4301 0.0683 –

As in the previous examples, the methods use Gaussian pro-
posal pdfs and the initial samples are selected randomly. In par-
ticular, for the j-th pdf its mean is μ−1, j ∼ U(R), where R =
[−5, 5] × [−5, 5] × [−5, 5] × [−5, 5], and its covariance matrix 
�−1, j = ξ2

j I4, with ξ2
j = [σ 2

j,1, σ
2
j,2, σ

2
j,3, σ

2
j,4]� and σ j,r ∼ U([1, 6])

for r = 1, . . . , 4.
We test different combinations of parameters keeping the total 

number of used samples fixed, MI = 2 · 106. We evaluate different 
values of M , M ∈ {200, 2 · 103, 5 · 103, 104, 2 · 104, 4 · 104, 105}, and 
as a consequence, I = 2·106

M .
We recall that D = M in PMC and D = 1 in AMIS. For the Mix-

AIS and APIS methods we use D ∈ {10, 200, 500}. The parameter 
N for APIS is N = ⌊ M

D

⌋ ≥ 2. We also run the Metropolis–Hastings
(MH) algorithm [2,16] with a random-walk Gaussian proposal dis-
tribution using the same initialization parameters as for the rest 
of methods. We consider a number of iterations for MH such that 
its execution time is comparable to the other techniques (one can 
find that IMH ≈ 4 · 104).2

We run 500 independent simulations and compute the MSE in 
the estimation of x (we average the MSEs of each component). The 
worst, best and averaged results in terms of MSE, obtained by the 
different methods, are shown in Table 10. The best result is pro-
vided by the standard PMC since the initialization of the samples 
is in a region that contains the mode of the posterior distribution, 
which is critical in the performance of the method. APIS provides 
the smallest difference between the worst and best results.

Fig. 6 illustrates the histograms of the estimations of the ex-
pected value of the target pdf (namely, the outputs of the algo-
rithms in this example) obtained with the different techniques and 
some specific values of the parameters indicated in the captions of 
the subplots. The true values x = [0.5, 0.1, − 0.8, 0.1]� are de-
picted with vertical dashed lines. This figure helps to understand 
that the results in Table 10 of AMIS do not properly reflect the 
overall performance of this method. Namely, as shown in Fig. 6(b), 
AMIS often provides values close to the true ones but in some par-
ticular runs, depending on the initial parameters, the method does 

2 The MH algorithm is a sequential method compared to the AIS methods which 
are more parallelizable.
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Fig. 6. AR model with non-Gaussian noise example with R = 4 unknown coefficients (i.e., x ∈ R
4): Histograms of the estimations of the expected value of the target pdf 

obtained with the different techniques. The true values of the components of x are shown with vertical dashed lines. The used combination of parameters is indicated in 
each subplot caption.

Fig. 7. AR model with non-Gaussian noise example with R = 4 unknown coefficients (i.e., x ∈ R
4): Averaged curves of convergence (in terms of estimation of the x values) of 

PMC, AMIS and APIS, respectively, as function of the number of iteration I . The solid lines show the true values of the components of x = [0.5, 0.1, − 0.8, 0.1]� .
not converge and the results deteriorate the MSE performance. 
However, as seen in Fig. 6(b), AMIS may provide excellent perfor-
mance. Finally, Fig. 7 displays the averaged convergence curves (in 
terms of estimation of the x values) of PMC, AMIS and APIS, re-
spectively.

5.3.2. Case R = 30
We consider the case x ∈ R

30, i.e., R = 30, with K = 50 obser-
vations. The data are generated setting xr = 1.7e−r , and yr = 1, 
with r = 1, . . . , 30. These coefficients ensure that the AR filter is 
stable. We use Gaussian proposal densities with initial samples 
selected randomly. In particular, for the j-th prior its mean is 
μ−1, j ∼ U(R), where

R = [−2,4]30 = [−2,4]× . . .×︸ ︷︷ ︸
30

[−2,4], (18)

and its covariance matrix �−1, j = ξ2
j I30, with ξ2

j = [σ 2
j,1:30]� and 

σ j,r ∼ U([0, 1]) for r = 1, . . . , 30. We test different combinations of 
parameters keeping the total number of used samples fixed, MI =
2 · 105:

– For PMC: M ∈ {103, 5 · 103, 104, 2 · 104, 4 · 104, 5 · 104} (recall 
M = D).

– For Mix-AIS: D ∈ {10, 200, 103} and M ∈ {100, 500, 103}.
– For AMIS: M ∈ {103, 5 · 103, 104, 2 · 104, 4 · 104, 5 · 104} (recall 

D = 1).
– For APIS: D ∈ {200, 103} and N ∈ {2, 10, 100, 200, 500} (recall 

M = ND).

The total number of iterations is set to I = MI
M = 2·105

M . We run 
500 independent simulations and compute the MSE in the estima-
tion of x (we average the MSEs of each component). The worst, 
best and averaged results in terms of MSE are shown in Table 11. 
In this case, the performance of PMC, AMIS and APIS are quite 
similar, but APIS seems to be more robust. We remark that in 
this example we test APIS even with small values of N ∈ {2, 10}
(N = 2 is the smallest possible value) which appears completely 
inappropriate for the dimension of the problem (x ∈ R

30). How-
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Table 11
AR model with non-Gaussian noise example with R = 30 unknown coefficients (i.e., 
x ∈ R

30): The worst, best and averaged results in terms of MSE for the different 
techniques and after testing several combinations of parameters. The smallest MSE 
for each row is boldfaced.

Results PMC Mix-AIS AMIS APIS

Worst 22.7401 15.034 13.670 6.371
Best 1.394 3.805 1.418 0.934
Average 6.214 7.221 4.256 2.221

ever, the used scale parameters in this example are quite small, 
σ j,r ∼ U([0, 1]), explaining why APIS obtains satisfactory results 
(compared to the other techniques) even with small N . Moreover, 
in this numerical example we can argue that APIS takes advantage 
of the deterministic mixture approach in a more efficient way than 
AMIS, considering in terms of computational effort and capability 
of reaching different modes.

5.4. Discussion

In this section, we provide some considerations about the sim-
ulation results and, more in general, the different techniques. The 
standard PMC method is less costly and the easiest algorithm to 
implement. Its performance is sensitive to the initialization, i.e., 
a good initialization in a finite space containing the modes of the 
target distribution is critical for its adequate performance (see for 
instance, Sections 5.2 and 5.3). If the mass of probability is con-
centrated in a small area in the domain of the target distribution, 
PMC performs better with a greater D (D = M). Moreover, with 
D → ∞, the resampling procedure provides virtually i.i.d. samples 
from the target distribution. However, in the first example in Sec-
tion 5.1 the results are worse than the other considered techniques. 
This is probably the result of a bad initialization, where samples 
were distributed uniformly on a rectangle which did not contain 
high probability regions.

AMIS seems to be stable and robust in terms of convergence 
and results, although its computational cost grows quickly with I . 
For this reason and for ease in the adaptation of parameters, when 
we keep constant MI = MI, AMIS works better with a greater value 
M compared to APIS and PMC. Moreover, since AMIS adapts the 
covariance matrix as well, larger values for the initial variances are 
more preferable than in APIS and PMC. Keeping constant MI = MI, 
there exists a relationship between the value of M and the values 
for the initial variances: larger initial parameters need of a larger 
value of M , while smaller initial variances need smaller M (and 
larger I). AMIS seems to be able to lock easily tight sharp modes 
when compared to the other algorithms. However, APIS and PMC 
seem more appropriate to handle multimodal target distributions, 
since they use D mixands in the proposal pdfs that allow for better 
exploration of state of the system (in AMIS, we have D = 1).

Furthermore, in these numerical examples, the Mix-AIS displays 
worse results than other techniques. The adaptation procedure of 
the proposal seems more difficult, slower and quite sensitive to the 
initial conditions. Unlike PMC and APIS, the proposal adaptation 
seems to work better with smaller values of D . Moreover, since 
Mix-AIS also updates the weights of the mixture, it seems to suffer 
a loss of diversity in the population, similar to that of the PMC 
scheme. As in AMIS, for a good adaptation one usually needs larger 
values of M as opposed to PMC and APIS.

Finally, APIS delivers in general good results especially with 
multimodal target distributions. APIS shares with PMC several 
properties, however it seems less dependent on the initial con-
ditions. Its performance clearly depends on the value of N (such 
that M = ND). If N is too small, the adapted proposal pdfs be-
come closer to random walks and the results deteriorate. With 
a large N , APIS becomes closer to a standard AIS. However, for 
given a number D of proposal distributions with chosen parame-
ters, there exists an optimal value N (keeping constant the number 
of total samples MI = MI = NDI) [25]. For larger variances, a larger 
N is needed, whereas with smaller variances a smaller value of N
provides better results.

6. Conclusions

This work provides a comprehensive review of the basics of 
adaptive importance sampling (AIS) in the field of signal process-
ing. An extensive survey of its state-of-the-art is provided, the 
general problem formulation and procedure is revisited. Moreover, 
we have studied in depth four specific methodologies that have 
obtained particular interest in the literature and have been applied 
successfully in signal processing. Several connections and differ-
ences have been highlighted. We have compared these different 
AIS schemes in three relevant numerical examples, providing in-
sights of the advantages and disadvantages. These considerations 
together with the general outline discussed in the first part of 
this work, represent a useful tool for designing novel AIS tech-
niques that may share features and overcome drawbacks of ex-
isting methodologies.
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