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Monte Carlo (MC) methods are widely used for Bayesian inference and optimization in statistics, 
signal processing and machine learning. A well-known class of MC methods are Markov Chain Monte 
Carlo (MCMC) algorithms. In order to foster better exploration of the state space, specially in high-
dimensional applications, several schemes employing multiple parallel MCMC chains have been recently 
introduced. In this work, we describe a novel parallel interacting MCMC scheme, called orthogonal MCMC
(O-MCMC), where a set of “vertical” parallel MCMC chains share information using some “horizontal” 
MCMC techniques working on the entire population of current states. More specifically, the vertical 
chains are led by random-walk proposals, whereas the horizontal MCMC techniques employ independent 
proposals, thus allowing an efficient combination of global exploration and local approximation. The 
interaction is contained in these horizontal iterations. Within the analysis of different implementations 
of O-MCMC, novel schemes in order to reduce the overall computational cost of parallel Multiple 
Try Metropolis (MTM) chains are also presented. Furthermore, a modified version of O-MCMC for 
optimization is provided by considering parallel Simulated Annealing (SA) algorithms. Numerical results 
show the advantages of the proposed sampling scheme in terms of efficiency in the estimation, as well 
as robustness in terms of independence with respect to initial values and the choice of the parameters.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Monte Carlo (MC) methods are widely employed in different 
fields for Bayesian inference and stochastic optimization [1–4]. 
Markov Chain Monte Carlo (MCMC) methods [5,6,4] are well-
known MC methodologies to draw random samples and efficiently 
compute integrals involving a complicated multidimensional target 
probability density function (pdf), π(x) with x ∈ D ⊆ R

dx . MCMC 
techniques only need to be able to evaluate the target pdf, but 
the difficulty of diagnosing and speeding up the convergence has 
driven intensive research efforts in this field. For instance, several 
adaptive MCMC methods have been developed in order to deter-
mine adequately the shape and spread of the proposal density 
used to generate candidate samples within an MCMC scheme [7,8,
4,9]. Nevertheless, guaranteeing the theoretical convergence is still 
an issue in most of the cases. Moreover, in a single specific (long) 
run, the generated chain can remain trapped in a local mode and, 
in this scenario, the adaptation could even slow down the con-
vergence. Thus, in order to speed up the exploration of the state 
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space, and specially to deal with high-dimensional applications, 
several schemes employing parallel chains have been recently pro-
posed [2,9], as well as multiple try and interacting schemes [10]. 
However, the problem is still far from being solved. The interest in 
the parallel computation can be also originated by other motiva-
tions. For instance, several authors have studied the parallelization 
of MCMC algorithms, which have traditionally been implemented 
in an iterative non-parallel fashion, in order to reduce their com-
putation time [11,12].

In this work, we focus on the implementation of parallel MCMC 
chains in order to foster the exploration of the state space and 
improve the overall performance. Computational speed up (as a
result of the parallelization) can be seen as an additional bene-
fit of the proposed approach, but it is not the main goal of the 
paper. We introduce a novel scheme that considers a population 
of samples at each iteration, similarly to other population-based 
techniques [13–15,3,16,17].1 More specifically, we present a novel 

1 A preliminary version of this work has been published in [18]. With respect to 
that paper, here we propose several novel interacting schemes for exchanging infor-
mation among the chains, analyze the theoretical basis of the proposed approach 
and discuss its relationships w.r.t. other techniques, in detail. Different variants 
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family of parallel MCMC schemes, called orthogonal MCMC (O-
MCMC) algorithms, where N different chains are independently 
run and, at some pre-specified iterations, they exchange informa-
tion using another MCMC technique applied on the entire cloud of 
current states. Assuming that all the MCMC techniques used yield 
chains converging to the target pdf, the ergodicity of the global 
scheme is guaranteed: the whole kernel is still valid, since it is 
obtained as the multiplication of ergodic kernels with the same 
invariant pdf. Fixing the computational cost, the computing effort 
can be divided into N parallel processes but, at some iteration, in-
formation among the chains is exchanged in order to enhance the 
overall mixing. Let us remark also that the novel O-MCMC scheme 
is able to combine efficiently both the random-walk and the inde-
pendent proposal approaches, as both strategies have advantages 
and drawbacks. On the one hand, random-walk proposal pdfs are 
often used when there is no specific information about the target, 
since this approach turns out to be more explorative than using a 
fixed proposal. On the other hand, a well-chosen independent pro-
posal density usually provides less correlation among the samples 
in the generated chain. In the novel method, the parallel “vertical” 
chains (based on random-walk proposals) move around as “free ex-
plorers” roaming the state space, whereas the “horizontal” MCMC 
technique (applied over the population of current states and based 
on independent proposals) works as a “park ranger”, redirecting 
“lost explorers” towards the “beaten track” according to the target 
pdf. Unlike in [19–22], the exchange of information occurs taking 
always into account the whole population of current states, in-
stead of applying crossover or exchange schemes between specific 
pairs of chains. Tempering of the target pdf is not considered for 
sampling purposes but it is employed for optimization. Hence, our 
approach resembles the nonreversible parallel MH algorithms de-
scribed in [23,24], where the whole population of states is also up-
dated jointly at the times of interaction, pursuing non-reversibility 
instead of tempering as a means to accelerate convergence towards 
posterior mode regions. However, both tempering and crossovers 
can also be easily implemented within the O-MCMC framework.

Another important contribution of the work is the computa-
tional improvement provided by novel parallel implementations of 
MCMC techniques using multiple candidates at each iteration. We 
present two novel schemes for parallel Multiple Try Metropolis 
(MTM) chains [10,25–29] (and similarly to [12]) in order to re-
duce the overall computational cost in the same fashion of [11], 
saving generated samples, target evaluations and multinomial sam-
pling steps. One of them is an extended version, using several 
candidates, of the Block Independent Metropolis presented in [11]. 
The ergodicity of both schemes is guaranteed. These novel par-
allel MTM techniques are employed as horizontal methods in O-
MCMC. The corresponding O-MCMC scheme (using a novel parallel 
MTM method) can also be interpreted as an MTM algorithm em-
ploying an adaptive proposal density. This pdf is a mixture of N
components: the adaptation of the location parameters of the N
components is driven by the vertical parallel chains (note that 
the outputs of these chains are also used in the estimation). Fur-
thermore, we describe a modified version of O-MCMC for solving 
optimization problems (where we employ tempering of the tar-
get), considering parallel Simulated Annealing algorithms [30–32]
for the vertical movements. Numerical simulations show that O-
MCMC exhibits both flexibility and robustness with respect to the 
initialization and parameterization of the proposals.

It is also important to remark that, in literature, there is a great 
interested in proposing possible parallel implementation of MCMC 

are presented in order to reduce the overall computational cost and for applying 
O-MCMC in optimization problems. Furthermore, we provide more exhaustive nu-
merical simulations.
algorithms [33–37], distributing the computing in different paral-
lel processors. However, it is not the goal of this work: we focus 
on suggesting a novel MCMC scheme which improves the perfor-
mance w.r.t. other techniques, fixing the number of target density 
evaluations (similarly to [11,12]).

The paper is structured as follows. Section 2 summarizes the 
general framework and the aim of the work. Section 3 describes 
the generic O-MCMC scheme, whereas Sections 4 and 5 provide 
different specific examples of vertical and horizontal movements, 
respectively. Section 6 discusses the O-MCMC framework for opti-
mization and Section 7 describes the connections with other tech-
niques. Section 8 provides different numerical results. Finally, some 
concluding remarks are provided in Section 9.

2. Bayesian inference problem

In many applications, we aim at inferring a variable of interest 
given a set of observations or measurements. Let us denote the 
variable of interest by x ∈D ⊆ R

dx , and let y ∈ R
dy be the observed 

data. The posterior pdf is then

π̄ (x) = p(x|y) = �(y|x)g(x)

Z(y)
, (1)

where �(y|x) is the likelihood function, g(x) is the prior pdf and 
Z(y) is the model evidence (a.k.a. marginal likelihood). In general, 
Z(y) is unknown, so we consider the corresponding unnormalized 
target function,

π(x) = �(y|x)g(x). (2)

In general, the analytical study of the posterior density π̄ (x) ∝
π(x) is unfeasible (for instance, integrals involving π̄ (x) are typi-
cally intractable), and numerical approximations are required. Our 
goal is to approximate efficiently π̄ (x) employing a cloud of ran-
dom samples. In general, a direct method for drawing independent 
samples from π̄ (x) is not available and alternative approaches (e.g., 
MCMC algorithms) are needed. The only required assumption is 
being able to evaluate the unnormalized target function π(x).

3. O-MCMC algorithms: general outline

Let us consider N parallel vertical chains, {xn,t}N
n=1 with t ∈ N, 

generated by different MCMC techniques with random-walk pro-
posal pdfs qn,t(x) = qn(x|xn,t−1) = qn(x − xn,t−1), i.e., xn,t−1 plays 
the role of a location parameter for the proposal pdf used in the 
next iteration. Let us denote the population of current states at the 
t-th iteration as

Pt = {x1,t,x2,t, . . . ,xN,t}.
At certain selected iterations, we apply another MCMC technique 
taking into account the entire population of states Pt−1, yielding 
a new cloud of samples Pt . In this “horizontal” transitions, the 
different chains share information. The horizontal MCMC technique 
uses a proposal pdf which is independent from the previous states, 
unlike the random walk proposals employed in the vertical MCMC 
chains. The general O-MCMC approach is represented graphically 
in Fig. 1 and summarized below:

1. Initialization: Choose the N initial states,

P0 = {x1,0,x2,0, . . . ,xN,0},
the total number of iterations, T , and three positive integer 
values M, T V , T H ∈N\{0} such that M(T V +T H ) = T . Set t = 1.

2. For m = 1, . . . , M :
(a) Vertical period: For

t = (m − 1)(T V + T H ) + 1, . . . ,mT V + (m − 1)T H ,
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Fig. 1. A graphical representation of the O-MCMC approach. After T V vertical transitions, then T H horizontal steps are performed.

Table 1
Notation for O-MCMC.

N Cardinality of the population, i.e., number of parallel chains.
T V Iterations per chain at each vertical period.
T H Iterations per chain at each horizontal period.
M Number of epochs, i.e., cycles of vertical and horizontal periods.
T Total number of iterations of the algorithm, T = M(T V + T H ).

ET Total number of evaluation of the target distribution π̄ (x) ∝ π(x).
N × T Total number of generated samples (states of the chains).

qn(x|xn,t−1) Proposal pdf of the n-th chain, for the vertical periods.
ϕ(x) Proposal pdf of the population approach for the horizontal periods.
ψ(x) = 1

N

∑N
n=1 ϕn(x|xn,t ) Proposal pdf of the mixture-based approach for the horizontal periods
run N independent MCMC techniques, starting from xn,t−1
∈ Pt−1, to obtain xn,t for n = 1, . . . , N , i.e., a new popula-
tion of states Pt = {x1,t, x2,t, . . . , xN,t}.

2.1. Horizontal period: For

t = mT V + (m − 1)T H + 1, . . . ,m(T V + T H ),

apply an MCMC approach taking into account the entire 
population Pt−1 to generate the next cloud Pt .

3. Output: Return the NT = N M(T V + T H ) samples contained in 
all the sets Pt , for t = 1, . . . , T .

In summary, one vertical period contains T V iterations of the 
chains, whereas in one horizontal period we have T H iterations. 
Hence, given t = (m − 1)(T V + T H ), after one cycle of vertical and 
horizontal steps we have t = m(T V + T H ). The total number of cy-
cles (or epochs)2 is then M = T

T V +T H
. The ergodicity is guaranteed 

if the vertical and horizontal steps produce ergodic chains with in-
variant density π̄ (x) (see Appendix A for further details). Table 1
summarizes the main notation of the paper and the connections of 
O-MCMC with other techniques are discussed in Section 7. In the 
following two sections, we introduce several examples of vertical 
and horizontal movements that lead to different O-MCMC algo-
rithms.

3.1. Key observation: burn-in and convergence

In general, several authors have noted that there is not a clear 
advantage using independent parallel MCMC chains (IPCs) with re-
spect to employing a single longer MCMC chain (fixing the number 
of evaluation of the target ET ) in terms of performance (e.g., see 

2 One cycle, or epoch, includes one the vertical period and one horizontal period.
[4,9,20,21,38]). The reason is that all the shorter parallel chains 
can remain within their “burn-in” period, thus jeopardizing the 
global performance, whereas the single longer chain can reach the 
convergence. Thus, the preference between these two schemes de-
pends on the specific problem [4,38–40].

The motivation behind O-MCMC is to take advantage of the 
aforementioned drawback of the IPCs scheme. Using IPCs we can 
discover different features of the target pdf in faster way with re-
spect to the use of a single chain, since the different chains will 
typically concentrate on different areas of the target during the 
first iterations depending on their initialization. O-MCMC allows 
the exchange of information among the chains without jeopardiz-
ing their ergodicity (see Appendix A). This is particularly useful 
in multimodal, high-dimensional problems. For instance, using dif-
ferent chains, there are more chances to discover the two modes 
of the target π̄ in Fig. 2. The horizontal step of O-MCMC allows 
the communications between the two chains in Fig. 2, fostering 
the identification of the other mode. Indeed, even if some chain 
is trapped around one mode, O-MCMC can still take advantage of 
this scenario by redirecting the other chains away from it, and the 
horizontal stage (which can be interpreted as an alternative to the 
use of resampling procedures [13–15]) will eventually cause this 
chain to move away from that mode. Finally, observe that by em-
ploying parallel chains it is possible to apply a diagnosis criterion 
in order to estimate the “burn-in” period, as already done by other 
authors [41–45]. This information can be employed in order to de-
sign adaptive strategies, as suggested in [9].

4. Vertical movements

In this section, we describe different implementations of the 
vertical parallel chains. Although it is not strictly necessary, we 
consider only random walk proposal densities in the vertical 
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Fig. 2. A graphical representation of the key motivation behind the O-MCMC approach. A bivariate, bimodal target pdf π̄(x) = π̄ (x1, x2) is considered (shown its contour plot) 
and N = 2 independent chains are run (their trajectories are depicted with dashed lines), both becoming trapped in a different mode. The horizontal step in O-MCMC fosters 
the mixing of the two chains by the exchange of information.
chains. The idea is to exploit predominantly the explorative be-
havior of the independent parallel MCMC methods. Therefore, we 
only consider proposals of the type qn(x|xn,t−1) = qn(x −xn,t−1). In 
this case, a sample x′ ∼ qn(x|xn,t−1) can be expressed as

x′ = xn,t−1 + ξn,t, (3)

where ξn,t ∼ q(ξ). Another more sophisticated possibility is to 
include the gradient information of the target within the pro-
posal pdf, as suggest in the Metropolis-Adjusted Langevin Algorithm
(MALA) [46]. In this case, a sample x′ ∼ qn(x|xn,t−1) becomes

x′ = xn,t−1 + ε

2
∇ log

[
π(xn,t−1)

]+ √
εξn,t, (4)

where ξn,t ∼ q(ξ) and ∇ f (x) denotes the gradient of a generic 
function f (x). This second alternative can be particularly useful in 
high-dimensional spaces, although it inevitably increases the prob-
ability of the chain of becoming trapped in one mode of the target 
in a multi-modal scenario. Thus, the joint application of N par-
allel chains appears very appropriate in this scenario, since they 
can easier reach different modes of the target. Moreover, the ap-
plication of the O-MCMC scheme facilitates the jumps among the 
different modes.

Regarding the MCMC algorithm, note that the random walk pro-
posal density qn(x|xn,t−1) can be applied within different MCMC 
kernels. The simplest possibility is using a Metropolis–Hastings
(MH) algorithm [4]. For each n = 1, . . . , N and for a given time 
step t , one MH update of the n-th chain is obtained as

1. Draw x′ ∼ qn(x|xn,t−1).
2. Set xn,t = x′ with probability

αn = min

[
1,

π(x′)qn(xn,t−1|x′)
π(xn,t−1)qn(x′|xn,t−1)

]
.

Otherwise (i.e., with probability 1 − αn) set xn,t = xn,t−1.

Many other alternative schemes can be used instead of MH kernel 
for the vertical chains. For instance, two particularly appealing al-
ternatives are the Multiple Try Metropolis (MTM) [25,28] and the 
Delayed Rejection Metropolis [47] techniques.

5. Horizontal movements

As described above, after each iteration t of the vertical period, 
the vertical chains return a population Pt = {x1,t, . . . , xN,t}. When 
t = mT V + (m − 1)T H , with m ∈ {1, ..., M}, i.e., after T V vertical 
transitions, then T H horizontal steps are performed. The purpose 
of these horizontal MCMC transitions is to exchange information 
among the N different chains, improving the global mixing. In the 
following, we consider two different general approaches for shar-
ing the information among the chains:

• In the first one, a population-based MCMC algorithm is ap-
plied. The states of the vertical chains contained in Pt are used 
as the initial population. Furthermore, the population-based 
MCMC scheme takes into account all the current population 
for making decisions about the next population.

• In the second one, named as mixture-based approach, the 
initial population Pt is also used for building a suitable 
density ψ(x). This pdf ψ is employed as proposal by the 
N parallel MCMC chains for yielding the next populations 
Pt+1, . . . , Pt+T H . More specifically, in this work we suggest 
to construct ψ(x) as a mixture of N pdfs, each one centered 
in xn,t ∈Pt .

In the following we show one specific example of the population-
based approach and three different versions of the mixture-based 
scheme. In all the different cases, for the horizontal movements 
we consider the use of independent proposal pdfs, unlike for the 
vertical ones, where we have used of random walk proposals.

5.1. Population-based approach

We consider a generalized target density,

π̄g(x1, . . . ,xN ) ∝
N∏

n=1

π(xn), (5)

where each marginal, π(xn) for n = 1, ..., N and xn ∈ D ⊆ R
dx , 

coincides with the target pdf in Eq. (2). The idea is that the 
horizontal MCMC transitions leave invariant the extended tar-
get π̄g . Namely, after a “burn-in” period, the population Pt =
{x1,t, . . . , xN,t} is distributed according to π̄g . The simplest pos-
sible population based scheme consists of employing a standard 
Metropolis–Hastings (MH) algorithm directly in the extended do-
main, DN ⊆ R

dX ×N , with a target π̄g , generating (block) transitions 
from Pt to Pt+1. However, the probability of accepting a new 
population in this case becomes negligible as N grows. As an al-
ternative example of a population-based scheme, we consider the 
Sample Metropolis–Hastings (SMH) method [39, Chapter 4]. At each 
iteration, the underlying idea of SMH is replacing one “bad” sam-
ple in the population with a “better” one, according to a certain 
suitable probability. The new sample, candidate of be incorporated 
in the population, is generated from and independent proposal 
pdf ϕ(x). The algorithm is designed so that, after a “burn-in” pe-
riod tb , the elements in Pt′ (t′ > tb) are distributed according to 
π̄g in Eq. (5). Table 2 provides a detailed description of the SMH-
based horizontal transitions.
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Fig. 3. A graphical representation of the mixture-based strategy. The mixture ψ(x) is formed by N components, ϕn(x|xn,t ), where xn,t ∈ Pt plays the role of a location 
parameter. Note that each component ϕn can be any kind of density defined in D, even a mixture itself.

Table 2
Sample Metropolis–Hastings (SMH) algorithm for horizontal transitions in O-MCMC.

1. For t = mT V + (m − 1)T H + 1, . . . , m(T V + T H ):
(a) Draw x0,t−1 ∼ ϕ(x).
(b) Choose a “bad” sample xk,t−1 ∈ Pt−1, i.e., select an index k ∈ {1, ..., N} with probability proportional to 

the inverse of the importance sampling weights

γk =
ϕ(xk,t−1)

π(xk,t−1)

N∑
n

ϕ(xn,t−1)

π(xn,t−1)

, k = 1, . . . , N.

(c) Accept the new population Pt = {xn,t }N
n=1, with xi,t = xi,t−1 for all i 
= k and xk,t = x0,t−1, with probabil-

ity

α =
∑N

n=1
ϕ(xn,t−1)

π(xn,t−1)

N∑
i=0

ϕ(xi,t−1)

π(xi,t−1)
− min

0≤i≤N

ϕ(xi,t−1)

π(xi,t−1)

. (6)

Otherwise (i.e., with prob. 1 − α) set Pt = Pt−1.
The acceptance probability, 0 ≤ α ≤ 1, depends on the entire 
population, xn,t−1 for n = 1, . . . , N , and the new candidate sample, 
x0,t−1. At each step, the sample chosen to be replaced is selected 
according to a probability proportional to the inverse of the cor-
responding importance weight. The ergodicity can be proved by 
considering the extended density π̄g as the target pdf (see Ap-
pendix D). Let us remark that the difference between Pt and Pt+1
is at most one sample. For this reason, a suggestion for a robust 
implementation is to set T H ≥ N (so that all the samples are po-
tentially replaced), although it is not strictly required as shown in 
Section 8. Moreover, it can be convenient to use in the estimation 
only the last population Pt+T H (excluding the sets among Pt and 
Pt+T H , generated in the horizontal step).

Finally, note also that the SMH algorithm becomes the standard 
MH method for N = 1. Hence, for N = 1 the specific O-MCMC im-
plementation using SMH consists of applying alternatively two MH 
kernels with different types of proposals: a random walk proposal, 
qn(x|xn,t−1), and an independent one, ϕ(x). This a well-known 
scheme (cf. [4,39]), which can be seen as a particular case of the 
O-MCMC family of algorithms.

5.2. Mixture-based approach

An alternative approach is defining the following mixture of 
pdfs, which is updated every T V vertical transitions,

ψ(x) = ψm(x|Pt) = 1

N

N∑
n=1

ϕn(x|xn,t), (7)

where t = mT V + (m − 1)T H , m = 1, . . . , M , and each xn,t ∈ Pt
plays the role of the location parameter of the n-th component 
of the mixture, ϕn . It is important to remark that each compo-
nent ϕn is a density arbitrarily chosen by the user, defined in 
D (it can be even a mixture itself). Observe that ψ(x) changes 
from one horizontal period to the next one (since it depends on 
the final population of the vertical period), but then it remains 
fixed within the T H iterations of each horizontal period. Thus, dur-
ing the complete O-MCMC run we employ M different mixtures, 
ψ1, . . . , ψM , one for each horizontal period. However, in order 
to simplify the notation, we use ψ(x). Fig. 3 provides a graphi-
cal representation. We employ ψ(x) within N independent MCMC 
schemes as an independent proposal density, namely independent 
from the previous state of the chain. The underlying idea is us-
ing the information in Pt , with t = mT V + (m − 1)T H , to build a 
good proposal function for performing N independent MCMC pro-
cesses. The theoretical motivation is that, after the burn-in periods, 
the vertical chains have converged to the target, so xn,t ∼ π̄ (x) for 
n = 1, . . . , N . Then, ψ(x) in Eq. (7) can be interpreted as a ker-
nel density estimation of π̄ , where ϕn play the role of the kernel 
functions.

5.2.1. Basic schemes
As a first example of this strategy, we consider the applica-

tion of MH transitions. At each iteration t = mT V + (m − 1)T H +
1, . . . , m(T V + T H ), one sample x′ is generated from ψ(x) and then 
N different MH tests are performed. The procedure is shown in 
Table 3 and represented in Fig. 4. Alternatively, a different sam-
ple x′

n , drawn from ψ(x), can be tested for each chain, as shown 
in Table 4. Hence, N different samples are drawn at each itera-
tion (instead of only one) but, after building ψ(x|Pt), the process 
could be completely parallelized. The variant in Table 4 provides 
in general better performance, although at the expense of a in-
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Table 3
Basic mixture scheme for horizontal transitions in O-MCMC.

1. Build ψ(x) = ψm(x|Pt ) as in Eq. (7), where t = mT V + (m − 1)T H .
2. For t = mT V + (m − 1)T H + 1, . . . , m(T V + T H ):

(a) Draw x′ ∼ ψ(x).
(b) For n = 1, . . . , N:

i. Set xn,t = x′ , with probability

αn = min

[
1,

π(x′)ψ(xn,t−1)

π(xn,t−1)ψ(x′)

]
= ω(x′) ∧ ω(xn,t−1),

where ω(x) = π(x)
ψ(x)

and a ∧ b = min [a,b], for any a, b ∈R. Otherwise, set xn,t = xn,t−1.
(c) Set Pt = {x1,t , . . . , xN,t }.

Fig. 4. A schematic representation of the basic horizontal scheme described in Table 3. One specific transition of one specific chain is represented with the probability 
αn = ω(x′) ∧ ω(xn,t−1), where ω(x) = π(x)

ψ(x)
, showing the two possible future states at the t-th iteration, of the n-th chain.

Table 4
Variant of the basic mixture scheme for horizontal transitions in O-MCMC.

1. Build ψ(x) = ψm(x|Pt ) as in Eq. (7), where t = mT V + (m − 1)T H .
2. For t = mT V + (m − 1)T H + 1, . . . , m(T V + T H ):

(a) For n = 1, . . . , N:
i. Draw x′

n ∼ ψ(x).
ii. Set xn,t = x′

n , with probability

αn = min

[
1,

π(x′
n)ψ(xn,t−1)

π(xn,t−1)ψ(x′
n)

]
= ω(x′

n) ∧ ω(xn,t−1),

where ω(x) = π(x)
ψ(x)

and a ∧ b = min [a,b], for any a, b ∈R. Otherwise, set xn,t = xn,t−1.
(b) Set Pt = {x1,t , . . . , xN,t }.
creasing computational cost in terms of evaluations of the target 
and number of generated samples. However, the block independent 
MH methodology [11], proposed in order to reduce the computa-
tional effort by recycling generated samples and target evaluations, 
can be employed. For clarifying that, let us consider for simplic-
ity T H = N . Step 2(a) in Table 3 could be modified by drawing 
only N independent samples x′

1, . . . , x
′
N from ψ(x) and, at each it-

eration t , a different circular permutation of the set {x′
1, . . . , x

′
N }

could be tested in the different N acceptance MH tests.3 Note that, 
the scheme in Table 3 yields dependent chains, whereas the al-
gorithm in Table 4 produces independent chains (the interaction, 
in this case, is only contained in the construction of the mixture 
ψ at the beginning of the horizontal period). Finally, observe that 
the procedure in Table 3 presents certain similarities with the Nor-

3 For further clarifications, see the extension of this scheme for a Multiple Try 
Metropolis method described in Section 5.2.3.
mal Kernel Coupler (NKC) method introduced in [48], thus indicat-
ing that NKC-type algorithms can be also employed as alternative 
population-based approaches.

5.2.2. Schemes based on multiple candidates
More advanced techniques can also be modified and used 

as horizontal methods. More specifically, the adaptation to this 
scenario of multiple try schemes is particularly interesting. For 
instance, we adjust two special cases4 of the Ensemble MCMC
(EnM) [49] and Multiple Try Metropolis (MTM) methods [25,40,28]
to fit them within O-MCMC. Tables 5 and 6 summarize them. 
Note that standard parallel EnM and MTM chains can be con-
sidered. However, we suggest two variants in order to reduce 
the computational cost. In both cases, L ≥ 1 different i.i.d. sam-

4 They are special cases of the corresponding algorithms, since an independent 
proposal pdf ψ is used.
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Table 5
Parallel Ensemble MCMC (P-EnM) scheme for horizontal transitions in O-MCMC.

1. Build ψ(x) = ψm(x|Pt ) as in Eq. (7), where t = mT V + (m − 1)T H .
2. For t = mT V + (m − 1)T H + 1, . . . , m(T V + T H ):

(a) Draw L i.i.d. candidates z1, . . . , zL ∼ ψ(x).
(b) For n = 1, . . . , N:

i. Set xn,t = zk ∈ {z1, . . . , zL}, i.e., select k ∈ {1, . . . , L}, with probability

αk =
π(zk)
ψ(zk)∑L

�=1
π(z�)
ψ(z�)

+ π(xn,t−1)

ψ(xn,t−1)

k = 1, . . . , L, (8)

or set xn,t = xn,t−1 with probability

αL+1 = 1 −
L∑

k=1

αk =
π(xn,t−1)

ψ(xn,t−1)∑L
�=1

π(z�)
ψ(z�)

+ π(xn,t−1)

ψ(xn,t−1)

, (9)

i.e., resample L times the set {z1, . . . , zL , xn,t−1} according to the weights αk for k = 1, . . . , L + 1.
ii. Set Pt = {x1,t , . . . , xN,t }.

Table 6
Parallel Multiple Try Metropolis (P-MTM) scheme for horizontal transitions in O-MCMC.

1. Build ψ(x) = ψm(x|Pt ) as in Eq. (7), where t = mT V + (m − 1)T H .
2. For t = mT V + (m − 1)T H + 1, . . . , m(T V + T H ):

(a) Draw L i.i.d. candidates z1, . . . , zL ∼ ψ(x).
(b) Draw N independent samples {zk1 , . . . , zkN } such that zkn ∈ {z1, . . . , zL}, i.e., select kn ∈ {1, . . . , L} for 

n = 1, . . . , N , with probability

βkn =
π(zkn )

ψ(zkn )∑L
�=1

π(z�)
ψ(z�)

. (10)

Namely, resample N times the samples in the set {z1, . . . , zL} with probability βk , k = 1, . . . , L.
(c) For n = 1, . . . , N:

i. Set xn,t = zkn with probability

αn = min

⎡
⎣1,

∑L
�=1

π(z�)
ψ(z�)∑L

�=1
π(z�)
ψ(z�)

− π(zkn )

ψ(zkn )
+ π(xn,t−1)

ψ(xn,t−1)

⎤
⎦ . (11)

Otherwise, set xn,t = xn,t−1 (with probability 1 − αn).
(d) Set Pt = {x1,t , . . . , xN,t }.
ples, z1, . . . , zL , are draw from ψ(x). In the parallel Ensemble 
MCMC (P-EnM) scheme, at each iteration t , one resampling step 
per chain is performed, considering the set of L + 1 samples 
{z1, . . . , zL, xn,t−1}, n = 1, . . . , N , using importance weights. In the 
parallel MTM (P-MTM) scheme, at each iteration t , N resampling 
steps are performed considering the set of L candidates {z1, . . . , zL}
and the new possible states are tested (i.e., accepted or not) ac-
cording to suitable acceptance probabilities αn , n = 1, . . . , N , in-
volving also the previous states xn,t−1. Another alternative and 
similar technique has been presented in [12], and it is described 
in Appendix C. This variant uses a non-independent proposal pdf 
and can be employed as horizontal step.

The ergodicity of both schemes is discussed in Appendix E. The 
algorithms in Tables 5–6 are obtained by a rearrangement of the 
basic schemes in [49,25,40] in order to generate, at each iteration 
t , N new states for the N independent parallel chains. The new 
states of the N chains are selected by filtering the same set of can-
didates {z1, . . . , zL}, drawn from the same independent proposal 
pdf ψ . Note that, with respect to a standard parallel approach, 
they require less evaluations of the target pdf: at each iteration, 
the algorithms in Tables 5–6 require L new evaluations of the tar-
get instead of the N L target evaluations required by a standard 
parallel approach. For further explanations, see Appendix E.1.1 and 
Fig. E.10. With L = 1, the algorithm in Table 5 coincides with 
the application of N parallel MH methods with Barker’s accep-
tance rule [50]. The algorithm in Table 6 with L = 1 coincides 
with the scheme presented in Table 3. Although any L ≥ 1 can 
be employed, a number of tries L ≥ N is suggested. Note that an-
other important difference with respect to the standard parallel 
implementation is that the generated chains are no longer inde-
pendent.

5.2.3. Block Independent Multiple Try Metropolis algorithm
Previously, we have pointed out that with the scheme in Ta-

ble 6 only L evaluations of the target are required at each iteration, 
instead of N L as in the standard parallel approach. The proposed 
scheme in Table 6 can also be modified in the same fashion of the 
block independent MH method [11], in order to reduce the number 
of multinomial sampling steps, without jeopardizing the ergodicity 
of the parallel chains. We remark that the corresponding tech-
nique, called Block Independent Multiple Try Metropolis (BI-MTM), 
can always be employed when N parallel independent MTMs are 
applied (even outside the O-MCMC scheme) in order to reduce the 
overall computational cost. Let us assume that the value N is such 
that the number of total transitions of one chain, T H , can be di-
vided in B = T H

N ∈ N blocks. The idea is based on using N circular 
permutations of the resampled set {zk , . . . , zkN }, i.e.,
1
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Fig. 5. A graphical representation of one block within the BI-MTM technique, described in Table E.13. One specific transition of one MTM chain is represented with the 
probability αn(xn,t−1, vn, j), showing the two possible future states at the t-th iteration, of the n-th chain. One block is formed by N transitions.

Table 7
Computational cost of O-MCMC given different horizontal schemes. Recall that the number of epochs is M = T

T V +T H
.

Computational features SMH P-EnM and P-MTM BI-MTM Stand. Parallel MTM

E H T H LT H LT H N LT H

ET = M(E V + E H ) M(NT V + T H ) M(NT V + LT H ) M(NT V + LT H ) M(NT V + N LT H )

Total number of multinomial sampling steps MT H MNT H MT H MNT H

Cardinality of set for the multinomial sampling N L L L
Total number of acceptance tests M(NT V + T H ) M(NT V + NT H ) M(NT V + NT H ) M(NT V + NT H )
V1 = {v1,1 = zk1 , . . . , vN−1,1 = zkN−1 , vN,1 = zkN },
V2 = {v1,2 = zkN , . . . , vN−1,2 = zkN−2 , vN,2 = zkN−1},

...

VN = {v1,N = zk2 , . . . , vN−1,N = zkN , vN,N = zk1},

(12)

where each set Vn denotes one the N possible circular permu-
tations of {zk1 , . . . , zkN }. In order to preserve the ergodicity, each 
zk j is drawn from a different set of tries S j = {z( j)

1 , . . . , z( j)
L }. More 

specifically, before a block of N iterations, N L tries are drawn from 
ψ(x), yielding N different sets, S j = {z( j)

1 , . . . , z( j)
L } for j = 1, . . . , N , 

each one containing L elements. Then, one sample zk j is resampled 
from each S j with probability proportional to the corresponding 
importance weight, and the circular permutations in Eq. (12) are 
created considering {zk1 , . . . , zkN }. The complete BI-MTM algorithm 
is detailed in Table E.13 and further considerations are provided in 
Appendix E. In Table E.13, we have denoted the acceptance prob-
ability as αn(xn,t−1, vn, j) to remark the two possible future states 
of the n-th chain at the t-th iteration. Fig. 5 depicts a schematic 
sketch of the different steps of one block within the BI-MTM algo-
rithm. Moreover, Fig. E.10 provides a graphical comparison among 
different parallel MTM approaches. BI-MTM requires only N multi-
nomial sampling steps for each block, i.e., N iterations, instead of 
N2 as P-MTM in Table 6. Moreover, BI-MTM is completely paral-
lelizable. Indeed, one could draw N LT H samples from ψ(x), per-
form NT H multinomial sampling steps within NT H different sets, 
and then run the T H parallel iterations of the N chains, i.e., one 
unique block, using circular permutations of the NT H resampled 
tries (previously obtained). The reduction in the computational 
cost is obtained at the expense of a moderate decrease in perfor-
mance.

5.3. Computational cost

In general, the most costly steps are those requiring the eval-
uation of the target pdf, especially for complex models or a large 
number of data. The number of evaluations of the target, in one 
horizontal period, are E H = T H for SMH in Table 2, whereas 
E H = LT H in P-EnM and P-MTM (considering, in all cases, only 
the new evaluations at each iteration, the others can be auto-
matically reused). Using SMH, T H multinomial sampling steps are 
performed, each one over a population of N samples. In P-EnM 
and P-MTM, NT H multinomial sampling steps are required (with 
N > 1), each one over a set of L samples. The total number of 
evaluations of the target, ET = M(E V + E H ), including the verti-
cal transitions, is ET = M(NT V + T H ) when the SMH is employed 
in the horizontal steps, or ET = M(NT V + LT H ) when P-EnM and 
P-MTM are employed. Furthermore, in BI-MTM, we have again 
ET = M(NT V + LT H ), but only T H multinomial sampling steps. 
Note also that in a standard parallel multiple try approach we 
would have E H = N LT H evaluations of the target and NT H multi-
nomial sampling steps, each one over a set of L samples. Finally, 
we remark that, using SMH, we perform one acceptance test in 
each step, i.e., T H in one horizontal period. Using a multiple can-
didates scheme, we employ NT H acceptance test in one horizontal 
period. All these considerations are summarized in Table 7. For fur-
ther details and observations, see Appendix E.1.1.

5.4. Communication cost

Let us consider briefly now the development of a truly par-
allel implementation of O-MCMC that can be distributed across 
different processors/machines. The vertical steps of O-MCMC can 
be clearly parallelized. However, O-MCMC needs a fusion center 
in order to perform the horizontal steps. In the mixture-based 
approach, i.e., O-MCMC-PMTM, the whole population of current 
states Pt = {xn,t}N

n=1 must be transmitted to this fusion center. If 
the fusion is performed after each vertical iteration, i.e., T V = 1, 
then some states, xn,t ∈ Pt , are likely to remain unchanged from 
the previous horizontal step, and thus only certain new (possibly 
high-dimensional) vectors xn,t have to be transmitted to the fusion 
center (indeed, the rest of states have been already transmitted to 
the fusion center in the previous horizontal step). In other cases, 
quantization and differential transmission strategies may alleviate 
the communication cost.

Note that this communication problem also occurs in many 
other state of the art algorithms, although it can be reduced 
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through a proper design of the algorithm. For instance, in popula-
tion-based techniques that employ resampling procedures [13,15], 
only the scalar importance weights have to be transmitted and, af-
ter the resampling stage, the fusion center can simply return the 
indices of the resampled particles. In our O-MCMC-SMH, we can 
follow the same strategy, transmitting only the scalar importance 
weights, as in [13,15]. After T H steps of SMH, the fusion center 
returns the novel states to the corresponding chains, that can be 
identified simply through an index.

However, in other more sophisticated schemes that construct 
the importance weights by considering the so-called deterministic 
mixture approach [3,14,51], the entire set Pt must be transmit-
ted, as in O-MCMC-PMTM. Similarly, the technique proposed in 
[12] and described in Appendix C, requires the knowledge of the 
L candidates for the computation of the weights in Eq. (C.1). Fi-
nally, in the MCMCMC (MC3) method [20,21], the communication 
cost is reduced w.r.t. O-MCMC by applying exchanges of particles 
between specific pairs of chains, whereas in the particle island ap-
proach [52] local resampling stages (which only require a subset 
of particles) are usually performed, with a global resampling stage 
(that requires all the particles) being performed only occasionally. 
This kind of strategies could be easily incorporated to the O-MCMC 
framework in order to enhance its distributed implementation.

5.5. Joint adaptation of the proposal densities

Let us denote as Cn and �n the covariance matrices of the verti-
cal and horizontal proposal pdfs, respectively. In order to design an 
algorithm as robust as possible, we suggest keeping the scale pa-
rameters Cn fixed for the vertical proposal pdfs qn(x|xn,t−1, Cn), to 
avoid a loss of diversity within the set of chosen variances. How-
ever, if desired, they could be easily adapted as suggested in [9]. 
On the other hand, we suggest adapting the scale parameters of 
the horizontal proposal pdfs ϕn , n = 1, . . . , N , since it is less del-
icate. Indeed, let us recall that a poor choice of the ϕn ’s entails 
an increase in the computational cost, but the diversity in the 
cloud of samples is always preserved. Several strategies have been 
proposed in [7,53] and [9], for adapting proposal functions on-
line within MCMC schemes. For the sake of simplicity, we discuss 
separately the cases of the population-based or the mixture-based 
approaches.

• Adaptation within SMH: in this case, the strategies in [53,9]
are appropriate. Thus, After a training period Ttrain < T , all
the generated samples (i.e., for each t > Ttrain and from all 
the chains) can be used to adapt the location and scale pa-
rameters of the proposal pdf ϕ(x). Namely, denoting ϕt(x) =
ϕ(x; μt , �t), we can use the following approach:
– If t ≤ Ttrain: set μt = μ0, �t = �0 (where μ0 and �0 are 

the initial choices).
– If t > Ttrain: set μt = 1

Nt

∑t
j=1
∑N

n=1 xn, j , and �t =
1

Nt

∑t
j=1
∑N

n=1(xn, j −μt)(xn, j −μt)
� + C, where C is a cho-

sen covariance matrix. The empirical mean and covariance 
matrix estimators can also be computed recursively [7].

• Adaptation of the mixture ψ(x): the methods in Section 5.2 em-
ploy a mixture ψ(x) = 1

N

∑N
n=1 ϕn(x). In this case, every com-

ponent

ϕn,t(x) = ϕn,t(x;μt,�t),

should be adapted, jointly with the weights of the mixture. 
A possible (and simple) adaptation scheme is provided in [7], 
where all the parameters of the mixture are updated online. 
The method in [7] can be easily reformulated for a framework 
with parallel chains. In this case, the states of the parallel 
chains are divided into N different clusters according to the 
Euclidean distance between them and location parameters of 
the N components in the mixture ψ(x). Then, new centroids 
(i.e., location parameters), covariance matrices and weights are 
updated according to the mean, covariance and cardinality of 
each cluster, respectively.

Finally we remark that, within the O-MCMC framework, it is 
straightforward to apply the well-known diagnostic criteria in 
[41–45] in order to estimate the “burn-in” period, and hence to 
help the design of the adaptation scheme [9].

6. O-MCMC for optimization

The O-MCMC schemes can be easily modified converting them 
in stochastic optimization algorithms. Indeed, it is possible to re-
place the N vertical MH chains with N parallel simulated annealing
(SA) methods [30,31]. Let us denote as γn,t ∈ (0, +∞) a finite scale 
parameter that is a decreasing function of t , approaching zero for 
t → +∞, i.e.,{
γn,t ≥ γn,t+1 ≥ . . . ≥ γn,t+τ > 0,

lim
t→+∞γn,t = 0,

(13)

for n = 1, . . . , N . Moreover, for the sake of simplicity, we consider 
symmetric proposal functions qn(y|x) = qn(x|y). Then, one transi-
tion of the n-th SA is described below:

1. Draw x′ ∼ qn(x|xn,t−1).
2. Set xn,t = x′ with probability

αn = min

⎡
⎣1,

[π(x′)] 1
γn,t

[π(xn,t−1)]
1

γn,t

⎤
⎦

= min

[
1,

(
π(x′)

π(xn,t−1)

) 1
γn,t

]
.

Otherwise, i.e., with probability 1 − αn , set xn,t = xn,t−1.

Note that, with respect to the MH algorithm, we have replaced 
the target π(x) > 0 with a modified target [π(x)] 1

γn,t > 0, with 
modes that become sharper and narrower when we reduce the 
scale parameter γn,t . Note also that the movements such π(x′) >
π(xn,t−1) are always accepted, whereas movements leading to 
π(x′) < π(xn,t−1) are accepted with probability

Pd =
(

π(x′)
π(xn,t−1)

) 1
γn,t ∈ (0,1].

This probability Pd → 0 vanishes to zero as γn,t → 0 (guaranteeing 
the convergence to the global maximum when t → +∞). In the 
same fashion, the modified target [π(x)] 1

γn,t is employed in the 
horizontal transitions of the mixture-based approach, whereas for 
the horizontal steps of the population-based approach we consider 
the modified extended target,

π̄g(x1, . . . ,xN) ∝
N∏

n=1

[π(xn)]
1

γn,t , (14)

so that all the presented schemes, previously described, can be au-
tomatically applied. Several possible decreasing functions γn,t have 
been suggested in [30,32,31]. For sampling and optimization pur-
pose, instead of using an artificial sequence of auxiliary parameters 
γn,t , γn,t+1, . . . , γn,t+τ , an alternative is to use the so called “data 
point tempered” techniques [54] where a sequence of P posteri-
ors, π1(x), π2(x),...,πP (x), with an increasing number of data, are 
considered (typically, for sampling purpose the last one contains 
all the data, i.e., πP (x) = π(x)).
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7. Relationship with other techniques

First, we recall that in this work we focus on population-based 
Monte Carlo schemes designed in order to foster the exploration 
of the state space and improve the overall performance. Note that 
the techniques shown in Tables 5 and 6 are interesting since they 
involve the use of resampling steps without jeopardizing the er-
godicity of the resulting global O-MCMC process. Moreover, the 
SMH algorithm in Table 2 employs an inverted resampling scheme, 
since a sample in the population is chosen to be replaced with 
probability proportional to the inverse of its importance weight. 
Other methodologies in the literature employ a combination of 
MCMC iterations and resampling steps. An example is sequential 
Monte Carlo (SMC) sampler for a static scenario [15] described in 
Appendix B.2. The underlying idea could be interpreted belonging 
to the O-MCMC philosophy: in these methodologies, the resam-
pling steps are seen as a “horizontal” approach for exchanging 
information within the population. The resampling procedure gen-
erates samples from a particle approximation

π̂ (L)(x) =
L∑

�=1

β�δ(x − z�), (15)

of the measure of π̄ (x), where z� ∼ ψ(x) (or, similarly, z� ∼ q�(x)

[51]) and β� are defined in Eq. (10) in Table 6, with � = 1, . . . , L. 
The quality of this approximation improves as the number L of 
samples grows. However, for a finite value of L there exists a dis-
crepancy which can produce problems in the corresponding sam-
pling algorithm. For further details see Appendix B. One important 
issue is the loss in diversity in the population.

This problem is reduced in O-MCMC, since the ergodicity is 
ensured in both the vertical and the horizontal movements. This 
improvement in the performance is obtained at the expense of in-
creasing the computational cost. For instance, let us consider the 
use of SMH in horizontal transitions. The cloud of samples is not 
impoverished by the application of SMH, even if a poor choice 
of the proposal ϕ(x) is made. In the worst case, the newly pro-
posed samples are always discarded and computational time is 
wasted. In the best case, a proposal located in a low probability 
region can jump close to a mode of the target. Clearly, in the 
mixture multiple try approach, it is better to choose L ≥ N for 
fostering the safeguard of the diversity. Moreover, in the mixture 
approach, the mixture ψ(x) = ψ(x|Pt) is built using the states in 
Pt as location parameters, and then it does not change for the next 
T H horizontal steps. Thus, the information contained in the states 
{xn,t}N

n=1 ∈ Pt is employed in the next T H iterations even if some 
states are not well-located. For clarifying this point, consider for 
instance the basic scheme in Table 3. The mixture ψ(x) = ψ(x|Pt)

does not change, so the information provided by the population 
Pt = {x1,t, . . . , xN,t} at the iteration t is still used in the iterations 
t + 1, . . . , t + T H . This feature is also the main difference between 
the scheme in Table 3 and the NKC-type methods [48], where one 
component of the mixture is relocated after each iteration. Unlike 
the MCMCMC (MC3) method [19–22], in O-MCMC the exchange 
of information occurs taking always into account the whole pop-
ulation of current states, instead of applying exchanges between 
specific pairs of chains. Similarities with the technique proposed 
in [12] are discussed in Appendix C.

8. Numerical simulations

8.1. Multimodal target distribution

In this section, we consider a bivariate multimodal target pdf, 
which is itself a mixture of 5 Gaussian pdfs, i.e.,
π̄ (x) = π(x) = 1

5

5∑
i=1

N (x;ν i,Gi), x ∈R
2, (16)

with means ν1 = [−10, −10]� , ν2 = [0, 16]� , ν3 = [13, 8]� , ν4 =
[−9, 7]� , and ν5 = [14, −14]� , and with covariance matrices

G1 = [2, 0.6;0.6, 1], G2 = [2, −0.4;−0.4, 2],
G3 = [2, 0.8;0.8, 2], G4 = [3, 0;0, 0.5], and

G5 = [2, −0.1;−0.1, 2].
Then, the target pdf π(x) has 5 different modes. We apply O-
MCMC to estimate the expected value E[X] of X ∼ π̄ (x) (the true 
mean is E[X] = [1.6, 1.4]�) using different values for the num-
ber of parallel chains N ∈ {5, 100, 1000}. Furthermore, we choose 
deliberately a “bad” initialization to test the robustness of the al-
gorithm. Specifically, we set xn,0 ∼ U([−4, 4] × [−4, 4]) for n =
1, . . . , N . This initialization is “bad” in the sense that it does not 
cover the modes of π(x). In all cases, we consider MH vertical 
kernels, with qn(x|xn,t−1) = N (x; xn,t−1, Cn) as proposal pdfs, us-
ing the same isotropic covariance matrix, Cn = σ 2I2, for all n =
1, . . . , N . We test different values of σ ∈ {2, 5, 10, 70} to gauge the 
performance of O-MCMC. In O-MCMC, we consider the application 
of SMH and P-MTM as horizontal techniques, as described below. 
In both cases, we adapt the covariance matrices of the proposal 
pdfs as suggested in Section 5.5.

• O-MCMC with SMH: As horizontal proposal, we use again 
a Gaussian pdf, ϕt(x) = N (x; μt , �t) where μt and �t

are adapted online: namely, μt = 1
Nt

∑t
j=1
∑N

n=1 xn, j , and 
�t = 1

Nt

∑t
j=1
∑N

n=1(xn, j − μt)(xn, j − μt)
� + �0, where μ0 =

[0, 0]� , �0 = λ2I2 with λ = 2.5 As remarked in Section 5.5, this 
adaptive procedure is quite robust since employs samples gen-
erated by different parallel chains [9]. Furthermore, we fix T =
4000 and T H = T V . We test different values of T V ∈ {1, 100}
and, as a consequence, M = T

T V +T H
= T

2T V
∈ {20, 2000}.6 Recall 

that the total number of evaluations of the targets in O-MCMC 
with SMH is ET = M(NT V + T H ) = T

2 (N + 1) (see Section 5.3).
• O-MCMC with P-MTM: We also test the O-MCMC scheme 

with P-MTM as horizontal technique. In this case, the (in-
dependent) proposal pdf is the mixture ψ(x) = ψm(x|Pt)

= 1
N

∑N
n=1 ϕn(x|xn,t, �t) with t = mT V + (m − 1)T H , �t =

1
Nt

∑t
j=1
∑N

n=1(xn, j − μt)(xn, j − μt)
� + �0, where μt =

1
Nt

∑t
j=1
∑N

n=1 xn, j , �0 = 4I2 (for all n = 1, . . . , N). We con-
sider different number of tries L = {5, 50} and set again 
T V = T H . In this case, the number of evolution of the target is 
ET = M(NT V + LT H ) = T

2 (N + L) (see Section 5.3).

Comparison with independent parallel chains (IPCs). We com-
pare the performance of O-MCMC with the application of IPCs, 
namely, only vertical independent transitions (also in this case the 
initial state is chosen randomly for each chain at each run, i.e, 
xn,0 ∼ U([−4, 4] × [−4, 4]) for n = 1, . . . , N). Therefore, we can 
infer the benefit of applying the horizontal interaction. For a fair 
comparison, in IPCs we use the same MH kernels, i.e., with the 
same proposals qn ’s, and we keep fixed the total number of eval-
uations of the target ET in both cases, O-MCMC and IPCs. Note 
that ET = NT ′ in IPCs where N is the number of chains and T ′

5 We set Ttrain = T V , i.e., the adaptation starts after that the samples of the first 
vertical period are collected. Thus, before of the first horizontal step, ϕt(x) has been 
already updated. However, an estimation of the “burn-in” period could be used for 
automatically tuning Ttrain [43].

6 We use all the generated samples in the estimation without removing any 
“burn-in” period.
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Table 8
Mean Square Error (MSE) in the estimation of the mean of the target, using O-MCMC with SMH and IPCs, considering different values of σ and T V (recall, we set T V = T H ). 
The total number of evaluations of the target ET is the same for O-MCMC (where ET = T

2 (N + 1) since T V = T H ) and IPCs (where ET = NT ). Note that ET = T for the single 
MH chain.

O-MCMC with SMH Independent parallel chains (IPCs) Single MH chain

N 5 100 1000 5 100 1000 1

T V 1 100 1 100 1 100 T T

σ = 2 1.4881 2.3649 1.7515 2.9146 5.6803 6.1354 28.7856 8.2925 7.3543 89.6476 87.1911 41.6461
σ = 5 1.4989 2.1724 1.4512 1.7089 1.3606 1.4825 13.0602 2.2842 1.8373 47.7092 5.8160 0.6027
σ = 10 1.1769 1.4034 0.1062 0.1129 0.0142 0.0139 2.4443 0.1247 0.0128 2.6611 0.1397 0.0274
σ = 70 1.8175 2.0730 0.3554 0.3483 0.2866 0.2815 5.4897 0.5469 0.3264 7.5976 0.5103 0.3271

T 4000 2400 2020 2002 12 · 103 2.02 · 105 20.02 · 105

ET 12 · 103 2.02 · 105 20.02 · 105 12 · 103 2.02 · 105 20.02 · 105 12 · 103 2.02 · 105 20.02 · 105

Table 9
Mean Square Error (MSE) in the estimation of the mean of the target, using O-MCMC with P-MTM and IPCs, considering different values of σ and T V (recall, we set T V = T H ). 
The total number of evaluations of the target ET is the same for O-MCMC (where ET = T

2 (N + L) since T V = T H ) and IPCs (where ET = NT ). Note that ET = T for the single 
MCMC chains. However, for DR-MH, we have ET = T ′ where T ′ depends on the number of rejections occurred in the specific run. The maximum number of acceptance tests 
in DR-MH, at the same iteration, is set to 3 (this parameter plays a similar role of the number of tries L in the MTM schemes).

O-MCMC with P-MTM IPCs Single MH chain Single A-MH Single DR-MH

N 5 50 5 50 1 1 1

T V 1 T T T T ′

L 5 50 5 50 − − – – – – 3

σ = 2 1.3907 1.1421 1.3156 0.7678 17.1352 3.5950 91.7211 87.0583 85.4229 36.2071 80.5092
σ = 5 1.6159 0.9074 1.4011 1.0072 12.5791 2.3277 37.9583 10.3945 7.1659 2.9921 6.5127
σ = 10 1.5738 0.8634 1.0982 0.8379 0.9403 0.1134 1.4694 0.2697 0.1375 0.1287 0.1385

T 4000 4000 2 · 104 11 · 104 20 · 104 20 · 104 T ′: dep. on the amount of 
rejections at each step

ET 2 · 104 11 · 104 11 · 104 20 · 104 2 · 104 20 · 104 2 · 104 11 · 104 20 · 104 20 · 104 20 · 104
the total number of iterations for each one. We test different val-
ues of N . Tables 8 and 9 show the Mean Square Error (MSE), 
averaged among the two dimensions, in the estimation of the ex-
pected value E[X] = [1.6, 1.4]� , averaged over 200 independent 
runs. O-MCMC with SMH always outperforms IPCs, specially for 
small σ and N . O-MCMC shows a much more stable behavior w.r.t. 
the parameter choice σ . For large scale parameters (σ ∈ {10, 70}) 
and a large number of chains (N ∈ {100, 1000}), the MSE of IPCs 
approaches the MSE of O-MCMC. A possible explanation is that the 
interaction is particularly useful with small N and a wrong choice 
of σ , whereas the use of large number of chains such as N = 100
or N = 1000 is enough, in this bidimensional example, for obtain-
ing good performance. Moreover, O-MCMC with SMH presents an 
anomalous behavior when the variance of the vertical proposal 
pdfs is σ = 2. In this specific case, i.e., only for σ = 2, the MSE 
seems increases with N . However, note that O-MCMC provides 
the lower MSE, in any cases, comparing with the same computa-
tional effort ET (with the exception of O-MCMC with P-MTM and 
σ = 10).
Comparison with a single MCMC chain. We test a single MH chain, 
i.e., N = 1, with a longer length T of the chain, in order to per-
form the same number of evaluation of the target E T . Note that, 
in this case, ET = T . Furthermore, we test the adaptive MH method 
(A-MH) [53] and the delayed rejection MH method (DR-MH) [47]. 
For A-MH, we consider 10% of the total iterations as a training 
period (before adaptive the covariance matrix of the proposal). In 
DR-MH, we consider at most 3 acceptance test before deciding the 
next state of the chain. At the t-th iteration, in each acceptance 
test of DR-MH, we use a Gaussian proposal pdf with mean the av-
erage between the previous mean value and the point rejected at 
the previous test (at the first stage, the proposal pdf has the cur-
rent state xt as mean). Since in DR-MH we can have more than one 
evaluation of the target at each iteration (at most 3), and since we 
fix the total number of evaluations ET , in general the total num-
ber of iterations T ′ is random and varies at each run. Again we set 
x0 ∼ U([−4, 4] × [−4, 4]), randomly chosen at each independent 
run, for each method. The results in Tables 8 and 10 show that in 
this example the use of parallel chains is more convenient in terms 
of performance. Namely, IPCs and O-MCMC provide a smaller MSE 
than a single-longer MCMC chains.
Comparison with Population Monte Carlo (PMC). We also com-
pare with the standard PMC technique [13], described in Ap-
pendix B. We use N ∈ {100, 500, 2000} and T = 2000 for PMC, 
so that the total number of evaluations of the target is E T =
NT ∈ {2 · 105, 10 · 105, 40 · 105}. The proposal pdfs used in PMC 
are the same that we apply for the vertical chains in O-MCMC, 
i.e., qn(x|xn,t−1) =N (x; xn,t−1, Cn) using again the same covariance 
matrix, Cn = σ 2I2, for n = 1, . . . , N and σ ∈ {2, 5, 10, 70} (again 
xn,0 ∼ U([−4, 4] × [−4, 4]) for n = 1, . . . , N). We have considered 
a higher number of ET for PMC with respect to O-MCMC, since 
O-MCMC involves several acceptance tests which are not contained 
in PMC. Thus, in order to provide a comparison as fair as possi-
ble, we allow a greater number of evaluations of the target, E T , 
for PMC. Table 10 shows the MSE (mean of the MSEs of each 
component) of the O-MCMC schemes and the PMC method, for 
estimating E[X]. We can see that the O-MCMC schemes, even with 
less ET , provide lower MSEs with the exception of the cases corre-
sponding to σ = 10.
Comparison with an adaptive SMC scheme. Finally, we compare 
with the SMC scheme described in Appendix B.2, where N par-
allel MCMC chains, generating the population {xn,t}N

n=1, and the 
interaction is performed by a resampling step, after drawing N
samples {xn,t+1}N

n=1, each one from xn,t+1 ∼ ϕn(x|xn,t, �t) (we 
set T V = 1). The resampling plays a role similar to the orthog-
onal steps in O-MCMC. Thus, for providing the fairest compari-
son as possible, we also consider here and adaptive covariance 
matrix �t = 1

Nt

∑t
j=1
∑N

n=1(xn, j − μt)(xn, j − μt)
� + �0, where 

μt = 1
Nt

∑t
j=1
∑N

n=1 xn, j and �0 = 4I2. Also, in this case, we have 
xn,0 ∼ U([−4, 4] × [−4, 4]) for n = 1, . . . , N , as for O-MCMC. Note 
that at each t-th iteration, t = 1, . . . , T , the resample-move SMC 
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Table 10
Mean Square Error (MSE) in the estimation of the mean of the target, using O-MCMC (T V = T H = 1 and L = 5 for P-MTM) and the standard PMC method [13]. The total 
number of evaluations of the target is ET = T

2 (N + 1) for O-MCMC-SMH, ET = T
2 (N + L) for O-MCMC-SMH (since T V = T H for both), ET = NT for PMC, and ET = 2NT for 

adaptive SMC.

O-MCMC with SMH O-MCMC with P-MTM PMC Adaptive SMC

N 5 100 1000 5 50 100 500 2000 100 200

σ = 2 1.4881 1.7515 5.6803 1.3907 1.3156 48.11 35.1772 28.4326 2.1114 1.1252
σ = 5 1.4989 1.4512 1.3606 1.6159 1.4011 2.5998 2.3230 1.9153 2.0800 1.1501
σ = 10 1.1769 0.1062 0.0142 1.5738 1.0982 0.0512 0.0141 0.0054 1.6845 0.9873
σ = 70 1.8175 0.3554 0.2866 2.0185 1.8019 2.3963 0.8252 0.1161 1.8899 0.9943

T 4000 2000 1000

ET 12 · 103 2.02 · 105 20.02 · 105 2 · 104 11 · 104 2 · 105 10 · 105 40 · 105 2 · 105 4 · 105

Table 11
Computational time (sec.) of the different algorithms with a Matlab implementation, as function of N and keeping fixed ET = 105. The other parameters of the techniques 
vary in order to keep fixed ET = 105 as N grows. We have also highlighted the ranking as P1, P2, P3, P4, P5, P6, and P7, where P1 is the fastest method and P7 the slowest 
one.

Method ET = 105

N = 100 N = 500 N = 1000 N = 2000 N = 3000 N = 5000 N = 104

O-MCMC-SMH (T V = T H = 1) 8.14 (P4) 2.16 (P4) 1.21 (P4) 0.67 (P3) 0.54 (P2) 0.39 (P2) 0.26 (P2)
O-MCMC-SMH (T V = 10, T H = 1) 2.33 (P3) 0.53 (P3) 0.29 (P1) 0.21 (P1) 0.12 (P1) 0.11 (P1) 0.09 (P1)
PMC 1.02 (P2) 0.52 (P2) 0.60 (P3) 0.87 (P4) 1.22 (P4) 1.81 (P4) 3.27 (P4)
Adaptive SMC 0.84 (P1) 0.33 (P1) 0.37 (P2) 0.48 (P2) 0.63 (P3) 0.93 (P3) 1.64 (P3)

Single MH chain (N = 1 and T = ET = 105) 83.43 (P5)
Single A-MH chain (N = 1 and T = ET = 105) 83.90 (P6)
Single DR-MH chain (N = 1 and T = ET = 105) 88.26 (P7)
scheme performs a multinomial resampling with cardinality N and 
then one step of N parallel MCMC chains. As a consequence, the 
total number evaluations of the target is E T = 2NT , recalling that 
we set T V = 1 (see Appendix B.2). The results shown in Table 10. 
In general, O-MCMC outperforms SMC, considering a similar num-
ber ET of target evaluations. For further comparison between O-
MCMC and SMC see Section 8.3.

Computational times (in seconds) are also provided in Ta-
ble 11.7 We can observe that, with a Matlab implementation, O-
MCMC is also competitive in terms of computational time. Due to 
the efficient matrix operations (at least with a Matlab implemen-
tation), the use of parallel chains is always more convenient in 
terms of computational time than the use of a single-longer chain 
(given a fixed number ET of target evaluations). However, in a spe-
cific scenario, a single chain with a longer run could perform better 
than shorter parallel chains. In this highly multimodal example the 
use of IPCs is more appropriate (see Tables 8–9).

8.2. Spectral analysis: estimating the frequencies of a noisy 
multi-sinusoidal signal

Many problems in science and engineering require dealing with 
a noisy multi-sinusoidal signal, whose general form is given by

yc(τ ) = A0 +
dx∑

i=1

Ai cos(2π f iτ + φi) + r(τ ), τ ∈ R,

where A0 is a constant term, dx is the number of sinusoids, {Ai}dx
i=1

is the set of amplitudes, {2π f i}dx
i=1 are the frequencies, {φi}dx

i=1
their phases, and r(τ ) is an additive white Gaussian noise (AWGN) 
term. The estimation of the parameters of this signal is required by 

7 In order to provide the computational times, the methods are tested in a 
Laptop-Mac-Processor 1.7 GHz-8 GB-1600 MHz-DDR3. A preliminary Matlab code 
of O-MCMC-SMH is also provided at http://www.mathworks.com/matlabcentral/
fileexchange/58207-omcmc-smh?s_tid=srchtitle (note that this code is not opti-
mized).
many applications in signal processing [55,56], in control (where 
a multi-harmonic disturbance is often encountered in industrial 
plants) [57,58] or in digital communications (where multiple nar-
rowband interferers can be roughly modeled as sinusoidal signals) 
[59,60]. Let us assume that we have dy equispaced points from 
yc(τ ), obtained discretizing yc(τ ) with a period Ts < π

max1≤i≤dx 2π f i

(in order to fulfill the sampling theorem [61]):

y[k] = A0 +
dx∑

i=1

Ai cos(�ik + φi) + r[k], k = 1, . . . ,dy,

where y[k] = yc(kTs) for k = 0, 1, . . . , dy − 1, �i = 2π f i Ts for 
i = 1, . . . , dx , and r[k] ∼ N (0, σ 2

w). Our goal is applying the O-
MCMC-type algorithms to provide an accurate estimate of the set 
of unknown frequencies, {�i}dx

i=1 or merely { f i}dx
i=1. For keeping the 

notation of the rest of the work, we define the vector of possible 
frequencies as x ∈ R

dx . Thus, given a fixed considering the hyper-

rectangular domain D =
[

0, 1
2

]dx
(it is straightforward to note the 

periodicity outside D), and a uniform prior on D, the posterior 
distribution given K data is π̄ (x) ∝ exp (−V (x)), where

V (x1, . . . , xdx) = 1

2σ 2
w

dy∑
k=1

⎛
⎝y[k] − A0 −

dx∑
i=1

Ai cos(xik + φi)

⎞
⎠

2

× ID(x).

We have denoted ID(x) the indicator function such that ID(x) = 1
if x ∈D and ID(x) = 0 if x /∈ D. Moreover, for the sake of simplic-
ity, we have assumed also that S and σ 2

w are known. Furthermore, 
we set A0 = 0, Ai = A = 1 and φi = 0.8 Note that the problem 
is symmetric with respect to the hyperplane x1 = x2 = . . . = xdx

(and, in general, multimodal). Bidimensional examples of V (x) =
logπ(x) are depicted in Fig. 6. We apply O-MCMC, comparing with 

8 Let us remark that the estimation of all these parameters would make the in-
ference harder, but can be easily incorporated into our algorithm.

http://www.mathworks.com/matlabcentral/fileexchange/58207-omcmc-smh?s_tid=srchtitle
http://www.mathworks.com/matlabcentral/fileexchange/58207-omcmc-smh?s_tid=srchtitle
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Fig. 6. Several examples of function V (x) = logπ(x) with dx = 2, given different realizations of the measurements y[1], . . . , y[K ]. In (a)–(d)–(e)–(f), we set f = [ 1
6 , 13 ]�

and consider dy = 10, 15, 20, 30 observations, respectively. In (b)–(c), we set f = [0.1, 0.3]� and dy = 10 observations. Black dotted points shows all the states generated 
throughout an O-MCMC-PMTM run with N = 10, L = 10 and T = 500. The initial states are chosen uniformly within D = [0, 12 ]� .

Fig. 7. Relative Error (averaged over 500 runs) in the first experiment for O-MCMC-SMH (solid line) and IPCs (dashed line) with different computational effort ET . Note that 
O-MCMC always outperforms IPCs. Note also that their performance becomes similar as the overall computational cost ET grows (due to the small size of the state space, 
D =

[
0, 1

2

]2
).
IPCs, in two different types of experiments described briefly below. 
In all cases, we set xn,0 ∼ U(D) for n = 1, . . . , N , T H = T V = 1, 
and consider the proposals qn(x|xn,t−1) = N (x; xn,t−1, Cn) with 
Cn = σ 2Idx , n = 1, . . . , N , for the vertical chains (Idx is the unit ma-
trix of dimension dx × dx).
First experiment. We set f = [ f1 = 0.1, f2 = 0.3]� and generate 
dy = 10 synthetic data from the model. Since in this case, dx = 2

and D =
[

0, 1
2

]2
, it is possible to approximate the posterior with 

a very thin grid and compute the first 4 non-central moments 
and, as a consequence, we can compare the performance of dif-
ferent Monte Carlo sampling methods. Then, we test O-MCMC-
SMH with the horizontal proposal ϕ(x) = N (x; μ, �) where μ =
[0.25, 0.25]� and � = σ 2I2, i.e., uses the same σ considered for 
the vertical chains (recall that Cn = σ 2I2). We set the total num-
ber of target evaluations ET = M(N + 1) ∈ {2730, 5450, 10.9 · 103}. 
For a fair comparison, we consider N independent parallel chains 
(IPCs) choosing T such that E ′

T = NT is equal to ET , i.e., E ′
T = ET

(see Section 5.3). We test different values of σ ∈ [0.05, 0.5] and 
N ∈ {2, 5, 10}. We test the combinations of number of chains N
and epochs M (T for IPCs) in order to keep fixed E T . The Relative 
Error (RE) in the estimation, averaged over 500 independent runs, 
is shown in Fig. 7. We can observe that O-MCMC (solid line) out-
performs IPCs (dashed line) providing lower REs. The performance 
becomes similar as the computational effort E T grows since the 

state space in the first experiment, D =
[

0, 1
2

]2
, is small enough 

for allowing an exhaustive exploration of D by independent chains.
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Fig. 8. Relative Error (averaged over 500 runs) in the second experiment (dimension dx = 4) searching the global maximum with O-MCMC (solid line) and IPCs (dashed line). 
In the O-MCMC-PMTM scheme, we use different λ = 0.1 and λ = σ, for the covariance matrices �n = λ2I4 of the horizontal proposal pdfs in the mixture ψ . Moreover, we 
test an adapted covariance matrices for the horizontal proposal pdfs (see (c)).

Fig. 9. MSE and Relative Error (averaged over 100 runs) as function of the dimension dx , in the third experiment (with dy = 200 observations) for O-MCMC-SMH (solid line) 
and IPCs (dashed line) with the same computational effort ET . Note that the performance degrades when the dimension is increased, but O-MCMC always outperforms IPCs.
Second experiment. We test O-MCMC in higher dimension consid-

ering dx = 4, i.e., D =
[

0, 1
2

]4
. We fix f = [ f1 = 0.1, f2 = 0.2, f3 =

0.3, f4 = 0.4]� . In this experiment, we consider an optimization 
problem for finding the global mode of π with dy = 30 obser-
vations. With dy = 30 observations, the main mode is enough 
tight around f, so that we consider f as true localization of 
the global mode. For simplicity and for breaking the symmetry, 
we restrict the search to the simplex contained in D with ver-
tices at [0, 0, 0, 0]� , [ 1

2 , 0, 0, 0]� , [ 1
2 , 12 , 0, 0]� , [ 1

2 , 12 , 12 , 0]� and 
[ 1

2 , 12 , 12 , 12 ]� . We test O-MCMC-PMTM considering again Gaussian 
horizontal proposals in the mixture ψ , with � = λ2I4 for all n. 
We test λ = 0.1 and λ = σ (where σ is employed in the co-
variance matrices Cn = σ 2I4 of the vertical chains). Moreover, we 
test the adaptation of �, i.e., �t = 1

Nt

∑t
j=1
∑N

n=1(xn, j −μt)(xn, j −
μt)

� + �0, where μt = 1
Nt

∑t
j=1
∑N

n=1 xn, j , �0 = 0.02I4, for all 
n = 1, . . . , N . We set N = 20 as number of chains, L = 20 as num-
ber of tries, and ET ≈ 8700 as total number of evaluations of 
the target. For a fair comparison, we again consider N and T for 
IPCs such that E ′

T = NT is equal to ET , i.e., E ′
T = ET . The verti-

cal proposal pdfs are the same than those for the IPCs scheme. 
Furthermore, we apply a data-tempering approach [54] described 
in Section 6, employing a sequence of 29 target pdfs πi each one 
considering an increasing number of observations Ki = 2 + (i − 1)

with i = 1, . . . , 29. The computational effort ET is distributed uni-
formly in each πi . We compute the Relative Error (RE) of the last 
states of the N chains with respect to the true vector f. Fig. 8 de-
picts the curves of the RE versus different values of σ ∈ [0.05, 0, 5]. 
We can observe that O-MCMC-PMTM always outperforms IPCs in 
this optimization problem.
Third experiment. Now we test O-MCMC in many different di-
mensions dx ∈ {2, 3, ..., 30}. The ground truth is the dx-dimensional 
vector f = [ f1, f2, ..., fdx ]� , with f i = i

2(dx+1)
, i.e., equally spaced 

within the interval [0 0.5]. The problem is again finding the global 
mode of the target π , which in this case includes dy = 200 ob-
servations. We consider f as true localization of the global mode 
for similar aforementioned reasons. The search is now restricted 
to the subset of Rdx where the dimensions of x are decreasingly 
sorted. Now the proposed O-MCMC-PMTM uses Gaussian horizon-
tal proposals in the mixture ψ , with � = λ2Idx for all n. Suggested 
by the second experiment, we set λ = 0.5 for the horizontal steps, 
and σ = 0.25 for the vertical chains. We set N = 50 as number of 
chains, L = 10 as number of tries, and ET ≈ 47040 as total number 
of evaluations of the target. For a fair comparison, we again con-
sider N and T for IPCs such that E ′

T = NT is equal to ET , i.e., E ′
T =

ET . The vertical proposal pdfs are the same than those for the IPCs 
scheme. The data-tempering approach of [54] is implemented with 
a sequence of 7 target pdfs πi each one considering an increasing 
number of observations 

[
d(1)

y , ...,d(7)
y

]
= [2, 5, 10, 20, 50, 100, 200]

with i = 1, . . . , 7. We compute the MSE (adding the MSE of ev-
ery dimension) and the Relative Error (RE) of the last states of the 
N = 50 chains with respect to the true vector f. Fig. 9 depicts the 
curves of the MSE and RE versus different values of σ ∈ [0.05, 0, 5]. 
Note that the performance degrades when the dimension is in-
creased, but O-MCMC again always outperforms IPCs.

8.3. Localization in a wireless sensor network

In this section, we address the problem of positioning a static 
target in the two-dimensional space of a wireless sensor network 
using only range measurements. More specifically, we consider 
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Table 12
Mean Square Error (MSE) in the estimation of the target position, using O-MCMC-SMH (T H = 1) and SMC. The total number of evaluations of the target is ET = 100(NT V +1)

for O-MCMC-SMH, whereas ET = 100N(T V + 1) for adaptive SMC.

O-MCMC with SMH Adaptive SMC

N 2 5 10 5 10 100

T V 2 20 2 20 2 20 2 20 2 20 2 20

σ = 1 0.1507 0.0021 0.0923 0.0008 0.0522 0.0003 9.2133 0.0233 9.8118 0.0065 4.0167 0.0022
σ = 2 0.1546 0.0029 0.0951 0.0011 0.0536 0.0004 3.8216 0.0684 3.6501 0.0593 1.1419 0.0370

ET 500 4100 1100 10100 2100 20100 1500 10500 3000 21000 30000 21 · 104
a random vector X = [X1, X2]� to denote the target’s position 
in the R2 plane. The position is then a specific realization x. 
The measurements are obtained from 6 range sensors located 
at h1 = [1, −8]� , h2 = [8, 10]� , h3 = [−15, −7]� , h4 = [−8, 1]� , 
h5 = [10, 0]� and h6 = [0, 10]� . The measurement equations are

Y j,r = −20 log
(‖x − h j‖2

)+ � j,

j = 1, . . . , 6, r = 1, . . . ,dy, (17)

where � j ∼ N (θ j |0, ω2
j I), with ω j = 5 for all j ∈ 1, . . . , 6. Note 

that the total number of data is 6dy . We consider a vague Gaussian 
prior pdf with mean [0, 0]� and covariance matrix [ω2

0 0; 0 ω2
0]�

with ω0 = 10,
We simulate 6dy = 360 measurements from the model (dy = 60

observations from each sensor), fixing x1 = 3.5 and x2 = 3.5. Our 
goal is to compute the expected value of the posterior π̄ (x|y), us-
ing different Monte Carlo techniques. Since we consider a fixed se-
quence of observations, for comparing the performance of the dif-
ferent methods, we first approximate the expected value of π̄ (x|y)

using an extremely thin grid obtaining E[X] ≈ [3.415, 3.539]� (so 
that we compare the Monte Carlo approximation with these true 
values).

We compare O-MCMC-SMH with SMC in Appendix B.2 both 
with adaptation covariance matrix of the proposal in the “hori-
zontal” step (i.e., used in the resampling in SMC), as suggested in 
Section 5.5. In both cases, we consider MH vertical kernels, with 
qn(x|xn,t−1) = N (x; xn,t−1, Cn) as proposal pdfs, using the same 
isotropic covariance matrix, Cn = σ 2I2, for all n = 1, . . . , N , and σ ∈
{1, 2}. As horizontal proposal in O-MCMC-SMH we use a Gaussian 
pdf, ϕt(x) = N (x; μt , �t) where μt and �t are adapted online, 
μt = 1

Nt

∑t
j=1
∑N

n=1 xn, j , and �t = 1
Nt

∑t
j=1
∑N

n=1(xn, j −μt)(xn, j −
μt)

� + �0, where μ0 = [0, 0]� , �0 = λ2I2 with λ = 0.2, and 
Ttrain = T V . The “horizontal” proposals in SMC are ϕn(x|xn,t, �t) =
N (x; xn,t , �t), for n = 1, . . . , N , and �t = 1

Nt

∑t
j=1
∑N

n=1(xn, j −
μt)(xn, j − μt)

� + �0 is adapted as in O-MCMC-SMH.
We set T H = 1 and number of epochs M = 100, for both al-

gorithms. Then, we test different values of N parallel chains, and 
vertical steps T V . The total number of evolution of the target 
is ET = M(NT V + T H ) = 100(NT V + 1) for O-MCMC-SMH and 
ET = 100N(T V + 1) for SMC (see Appendix B.2). We repeat the 
experiments 200 times (with independent runs) and average the 
results. At each run, the initial states are chosen randomly, xn,0 ∼
U([−10, 10] × [−10, 10]) for n = 1, . . . , N . Table 12 gives the MSE 
in estimation of the expected value of the posterior, with the dif-
ferent methods. The results in Table 12 confirm that O-MCMC out-
performs SMC even with less computational cost (a smaller E T ). 
This shows that the advantage of replacing the resampling proce-
dure with an orthogonal MCMC technique like SMH, in this case.

9. Conclusions

In this work, we have introduced a novel family of MCMC 
algorithms, named Orthogonal MCMC schemes, that incorporates 
“horizontal” MCMC transitions to share information among a cloud 
of parallel “vertical” MCMC chains. We have described different 
alternatives for exchanging information among independent par-
allel chains. Compared to the fully independent parallel chains 
approach, the novel interacting techniques show a more robust 
behavior with respect to the parameterization and better perfor-
mance for different number of chains. One reason of this behavior 
is that the novel algorithms provide a good trade-off between the 
use of an independent and a random walk proposal density, i.e., 
between local a global exploration. We have considered two differ-
ent approaches for the interaction among the chains: in the first 
one, an MCMC technique over the entire population is directly ap-
plied, whereas in the second one, the initial population Pt is used 
for building a suitable mixture density ψ(x) employed as proposal 
function in the horizontal transitions. This second approach can be 
interpreted as an adaptive MCMC scheme, where the location pa-
rameters of the N components of the mixture ψ(x) are driven by 
N parallel MCMC chains. The outputs of these parallel chains are 
also employed in the approximation of the target. Furthermore, we 
have designed different parallel Multiple Try Metropolis (P-MTM) 
schemes using an independent proposal pdf, where the generated 
candidates are recycled in order to reduce the overall computa-
tional cost. Finally, we have described two modified versions of 
O-MCMC for optimization and inference in big data problems. The 
ergodicity of all the proposed methodologies has been proved and 
several numerical simulations have been provided in order to show 
the advantages of the novel approach.

In future works we plan to address the development of paral-
lel and data-distributed implementations of O-MCMC algorithms, 
considering the use of strategies for monitoring the convergence 
of the vertical chains, and tempered versions for sampling from 
high-dimensional and multi-modal targets.
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Appendix A. Stationary distribution of O-MCMC

In this section, we prove the ergodicity of the proposed 
schemes. First of all, we study the mixture-based approach in-
troduced in Section 5.2, and then the population-based approach 
described in Section 5.1, within O-MCMC.

A.1. Analysis for the mixture-based approach

Let us consider two MCMC kernels, K (V )
n (y|x) and K (H)

n (z|y)

with x, y, z ∈ D ∈ R
dx , corresponding to the n-th chain for the 

vertical and horizontal steps, respectively. We assume π̄ (·) is the 
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invariant density of both chains. Namely, we consider MCMC tech-
niques whose steps are summarized in the two conditional proba-
bilities, K (V )

n (y|x) and K (H)
n (z|y), such that∫

D

K (V )
n (y|x)π̄ (x)dx = π̄ (y),

∫
D

K (H)
n (z|y)π̄ (y)dy = π̄ (z).

For the sake of simplicity, we tackle a simpler case where K (V )
n , 

K (H)
n are used sequentially, once each (i.e., T V = 1 and T H = 1). 

Namely, we consider the sequential application of K (V )
n and K (H)

n , 
i.e., first draw y′ ∼ K (V )

n (y|x) and then draw z′ ∼ K (H)
n (z|y′). The 

transition probability from z to x is given by

T (z|x) =
∫
D

K (H)
n (z|y)K (V )

n (y|x)dy. (A.1)

The target π̄ is also invariant w.r.t. T (z|x) [38, Chapter 1]. Indeed, 
we can write∫

D

T (z|x)π̄ (x)dx =

=
∫
D

⎡
⎣∫
D

K (H)
n (z|y)K (V )

n (y|x)dy

⎤
⎦ π̄ (x)dx,

=
∫
D

K (H)
n (z|y)

⎡
⎣∫
D

K (V )
n (y|x)π̄ (x)dx

⎤
⎦dy,

=
∫
D

K (H)
n (z|y)π̄ (y)dy,

= π̄ (z), (A.2)

which is precisely the definition of invariant pdf associated to 
T (z|x). Clearly, this argument is valid for each n = 1 . . . , N , and 
can be easily extended for the product of more than two kernels 
(i.e., for any T V , T H < ∞).

A.2. Analysis for the population-based approach

Considering now an extended state space, RdX ×N , we can in-
terpret that O-MCMC yields a unique chain in RdX ×N . Namely, one 
population of states at the t-th iteration represents one extended 
state of this unique chain. Here, we show that this chain, generated 
by O-MCMC, has the extended target density

π̄g(x1, . . . ,xN ) ∝
N∏

n=1

π(xn),

as invariant pdf. We can use similar arguments to those employed 
previously, considering now a population of current states, i.e.,

Pt−1 = {x1,t−1, . . . ,xN,t−1}.
We denote the vertical MCMC kernels as K (V )

n (xn,t |xn,t−1) with 
π̄ as invariant pdf, whereas K (H)(Pt |Pt−1) denotes the horizon-
tal kernel9 with invariant pdf the aforementioned extended target 
pdf,

9 For the sake of simplicity, we abuse of the notation using here the set Pt as a 
vector. Moreover, we assume T V = 1 and T H = 1.
π̄g(P) ∝ πg(x1, . . . ,xN) =
N∏

n=1

π(xn).

Thus, in this case the complete kernel of the O-MCMC procedure 
formed by one vertical and one orthogonal step, is

T (Pt |Pt−2) =
∫
DN

K (H)(Pt |Pt−1)

×
[

N∏
n=1

K (V )
n (xn,t−1|xn,t−2)

]
N∏

n=1

dxn,t−1.

In this case, we can write∫
DN

T (Pt |Pt−2)π̄g(Pt−2)dPt−2 =

=
∫
DN

K (H)(Pt |Pt−1)

×
⎡
⎢⎣∫
DN

(
N∏

n=1

K (V )
n (xn,t−1|xn,t−2)

N∏
n=1

π̄ (xn,t−2)

)
N∏

n=1

dxn,t−2

⎤
⎥⎦

×
N∏

n=1

dxn,t−1,

=
∫
DN

K (H)(Pt |Pt−1)

N∏
n=1

π̄ (xn,t−1)

N∏
n=1

dxn,t−1

=
∫
DN

K (H)(Pt |Pt−1)π̄g(Pt−1)dPt−1 = π̄g(Pt).

Namely, the kernel T (Pt |Pt−2) has π̄g as invariant density. Once 
more, this result can be easily extended when T V vertical and T H

horizontal transitions are applied by using the same arguments. 
Note that the generated parallel chains preserve the pdf π as in-
variant pdf, as shown previously, but in general is not reversible 
[38, Section 1.12.7].

Appendix B. Population Monte Carlo (PMC), Sequential Monte 
Carlo (SMC) and distribution after resampling

Resampling procedures are employed in different Monte Carlo 
techniques such as Population Monte Carlo (PMC), Iterated Batch 
Importance Sampler (IBIS) and, more generally, in Sequential 
Monte Carlo (SMC) methods for a static scenario [13,54,15].

B.1. Standard PMC

For simplicity, let us consider here a standard PMC-type 
scheme. In PMC, N different proposal pdfs q1, . . . , qN are em-
ployed at each iteration. Starting from {x1,0, . . . , xN,0}, the basic 
PMC scheme consists of the following steps:

1. For t = 1, . . . , T :
(a) For n = 1, . . . , N:

i. Propagation: Draw one sample xn,t from qn , i.e.,

xn,t ∼ qn(x|x̃n,t−1),

ii. Weighting: Assign the unnormalized weight wn,t =
π(xn,t ) and store the pair {xn,t, wn,t}.
qn(xn,t |x̃n,t−1)
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iii. Resampling: Draw N independent samples {z1, . . . , zN}
such that each zn ∈ {x1,t, . . . , xN,t} for n = 1, . . . , N , with 
probability

βn = wn,t∑N
k=1 wk,t

=
π(xn,t )

qn(xn,t |x̃n,t−1)∑N
k=1

π(xk,t )

qk(xk,t |x̃k,t−1)

. (B.1)

iv. Set x̃n,t = zn .
2. Use all the pairs {xn,t, wn,t}N,T

n,t=1 in order to build a unique IS 
estimator (normalizing jointly the weights wn,t ).

The step 2(b) corresponds to resample (with replacement) N times 
the population {xn,t}N

n=1. Note that the weights in Eq. (B.1) are the 
same used in (10).

B.2. A Sequential Monte Carlo sampler

A generic Sequential Monte Carlo method for a static inference 
scenario have been exhaustively described in [15]. For facilitating 
the comparison with O-MCMC, we describe a specific SMC scheme 
(also known as “resample-move” scheme [62]) without consider-
ing a sequence of tempered target pdfs, but always the true target, 
i.e., π̄ . Below, we describe a specific SMC technique which belongs 
to this wide class, due to its connection to the O-MCMC frame-
work. Starting from the population {x1,0, . . . , xN,0}, this specific 
SMC scheme for a static scenario consists of the following steps:

1. For t = 1, . . . , T :
(a) For n = 1, . . . , N:

i. Propagation: draw one sample xn,t from qn , i.e.,

xn,t ∼ qn(x|x̃n,t−1).

ii Weighting: Assign the unnormalized weight wn,t =
π(xn,t )

qn(xn,t |x̃n,t−1)
and store the pair {xn,t, wn,t}.

iii. Resampling: Draw N independent samples {z1, . . . , zN}
such that each zn ∈ {x1,t , . . . , xN,t} for n = 1, . . . , N , 
with probability

βn = wn,t∑N
k=1 wk,t

=
π(xn,t )

qn(xn,t |x̃n,t−1)∑N
k=1

π(xk,t )

qk(xk,t |x̃k,t−1)

. (B.2)

iv. Moving: Apply one step of N parallel MCMC chains 
(with invariant target π̄ ), starting from {z1, . . . , zN} and 
obtaining the new population {x̃1,t , . . . , ̃xN,t}.

Above we have considered only T V = 1 step for each “vertical” 
MCMC moves. However, it can be used T V different steps as well, 
as in the numerical example in Section 8.3. In this case, the total 
number of evaluations of the target is ET = T N(1 + T V ). Finally, 
observe that the resampling plays a similar role to the orthogonal 
step in O-MCMC.

B.3. Distribution after resampling

For the sake of simplicity, since we consider a generic it-
eration t , let us simplify the notation, denoting xn = xn,t ∼
qn(x|xn,t−1) (1 ≤ n ≤ N , 1 ≤ t ≤ T ), and qn(x) = qn(x|xn,t−1). More-
over, we consider the following simplified procedure:

1. For n = 1, . . . , N , draw xn ∼ qn(x) and compute the weights βn

in Eq. (B.1).
2. Resample one sample z ∈ {x1, . . . , xN } according to the proba-

bilities βn , n = 1, . . . , N .
In this section, we write the density φ(z) where z is obtained by 
the procedure above. We define as

m¬n = [x1, . . . ,xn−1,xn+1, . . . ,xN ],
the matrix containing all the samples except for the n-th. Let us 
also denote as z ∈ {x1 . . . , xN}, a generic sample after applying one 
multinomial resampling step. Hence, the distribution of z is given 
by

φ(z) =
∫
DN

π̂ (N)(z|x1, . . . ,xN)

[
N∏

n=1

qn(xn)

]
dx1 . . .dxN , (B.3)

where

π̂ (N)(z|x1, . . . ,xN ) =
N∑

j=1

β jδ(z − x j), (B.4)

and β j are given in Eq. (B.1). Note that, by using the notation 
π̂ (N)(z|x1, . . . , xN ) we have emphasized the dependence on the 
generated samples xn ’s in order to facilitate the understanding of 
Eq. (B.3). After some straightforward rearrangements, Eq. (B.3) can 
be rewritten as

φ(z) =
N∑

j=1

⎛
⎜⎜⎝
∫

DN−1

π(z)∑N
n=1

π(xn)
qn(xn)

⎡
⎢⎢⎣

N∏
n=1
n 
= j

qn(xn)

⎤
⎥⎥⎦dm¬ j

⎞
⎟⎟⎠ . (B.5)

Finally, we can write

φ(z) = π(z)
N∑

j=1

∫
DN−1

1

N Ẑ

⎡
⎢⎢⎣

N∏
n=1
n 
= j

qn(xn)

⎤
⎥⎥⎦dm¬ j, (B.6)

where Ẑ = 1
N

∑N
n=1

π(xn)
qn(xn)

is the estimate of the normalizing con-
stant of the target obtained by using the importance sampling 
technique. The equation above represents the density of a resam-
pled particle. Clearly, for a finite value of N , there exists a discrep-
ancy between φ(z) and π̄ (z).

Appendix C. Calderhead’s MCMC technique based on multiple 
candidates

A similar approach to ensemble algorithm proposed in Ta-
ble 5 has been proposed in [12], which is suggested as a general 
construction in order to parallelize a Metropolis–Hastings algo-
rithm. The algorithm can be employed as orthogonal technique in 
O-MCMC and is outlined below:

1. Set t = 1, and choose an initial state x1.
2. For m = 1, . . . , T

L :
(a) Draw L candidates z1, . . . , zL from q(z1, . . . , zL |xt) and set 

zL+1 = xt .
(b) Denoting with

Z−k = [z1, . . . , zk−1, zk+1, . . . , zL],
the matrix containing as column all the z’s with the ex-
ception of zk , Compute L + 1 normalized weights

βk = π(zk)q(Z−k|zk)∑L+1
�=1 π(z�)q(Z−�|z�)

. (C.1)

(c) Resample L times within the set {z1, . . . , zL+1} of L + 1
elements, obtaining L samples xt+1, . . . , xt+L , according to 
the probabilities β� in Eq. (C.1), � = 1, . . . , L + 1.
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(d) Set t = t + L = mL.
3. Return {xt}T

t=1.

In this case, unlike in Table 5, the proposal density q depends 
on the previous state of the chain. Below, we also discuss the 
ergodicity of this technique where, for simplicity, we consider of 
resampling only once in step 2(c) and assume

q(z1, . . . , zL |xt) =
L∏

�=1

q(z�|xt).

Denoting as K (zk|xt) the kernel of the method and noting that 
q(z1, . . . , zL |xt) = q(Z−(L+1)|xt), we can write

π̄ (xt)K (zk|xt)

= Lπ̄ (xt)

∫
DL−1

q(z1, . . . , zL |xt)
π(zk)q(Z−k|zk)∑L+1

�=1 π(z�)q(Z−�|z�)
dZ−k,

= L

Z
π(xt)π(zk)

∫
DL−1

q(Z−(L+1)|zL+1)q(Z−k|zk)∑L+1
�=1 π(z�)q(Z−�|z�)

dZ−k =

Since zL+1 = xt , then

π̄ (xt)K (zk|xt)

= L

Z
π(xt)π(zk)

×
∫

DL−1

q(Z−(L+1)|xt)q(Z−k|zk)∑L
� 
=k,L+1 π(z�)q(Z−�|z�) + π(zk)q(Z−k|zk) + π(xt)q(Z−(L+1)|xt)

dZ−k,

= π̄ (zk)K (xt |zk),

which is the detailed balance condition (we have used that we can 
exchange the position of zk and xt without varing the expression 
above).

Appendix D. Ergodicity of SMH

Let us recall that we denote as Pt−1 = {x1,t−1, . . . , xN,t−1}, the 
population of the states at the (t −1)-th iteration. A sufficient con-
dition for proving the ergodicity of the chain, generated by SMH, 
is given by the detailed balance condition with respect to the ex-
tended target π̄g(x1, . . . , xN ) =∏N

i=1 π̄i(xi). For the case Pt 
=Pt−1
(the case Pt = Pt−1 is straightforward), the kernel of SMH can be 
expressed as

K (Pt |Pt−1) = Nϕ(x0,t−1)

ϕ(x j,t−1)

π(x j,t−1)∑N
i=1

ϕ(xi,t−1)

π(xi,t−1)

α(Pt−1,x0,t−1),

where we have considered that the j-th state has been selected as 
a candidate for replacement and α is given by Eq. (6). Since j ∈
{1, . . . , N}, for the interchangeability we have N equal probabilities 
(this is the reason of the factor N). Replacing the expression of α
in Eq. (6), we obtain

K (Pt |Pt−1) = Nϕ(x0,t−1)

ϕ(x j,t−1)

π(x j,t−1)∑N
i=1

ϕ(xi,t−1)

π(xi,t−1)

×
∑N

i=1
ϕ(xi,t−1)

π(xi,t−1)∑N
i=0

ϕ(xi,t−1)

π(xi,t−1)
− min

0≤i≤N

ϕ(xi,t−1)

π(xi,t−1)

,

= N

π(x j,t−1)

ϕ(x0,t−1)ϕ(x j,t−1)∑N
i=0

ϕ(xi,t−1)

π(xi,t−1)
− min

0≤i≤N

ϕ(xi,t−1)

π(xi,t−1)

.

Now, we can also write
π̄g(Pt−1)K (Pt |Pt−1) =
[

N∏
i=1

π̄ (xi,t−1)

]
N

π(x j,t−1)

= ϕ(x0,t−1)ϕ(x j,t−1)∑N
i=0

ϕ(xi,t−1)

π(xi,t−1)
− min

0≤i≤N

ϕ(xi,t−1)

π(xi,t−1)

,

and defining γ (Pt−1, x0,t−1) =∑N
i=0

ϕ(xi,t−1)

π(xi,t−1)
− min

0≤i≤N

ϕ(xi,t−1)

π(xi,t−1)
, we 

have

π̄g(Pt−1)K (Pt |Pt−1)

= N

Z

⎡
⎣ N∏

i=1 
= j

π̄ (xi,t−1)

⎤
⎦ ϕ(x0,t−1)ϕ(x j,t−1)

γ (Pt−1,x0,t−1)
,

where Z = ∫D π(x)dx. This expression above is symmetric w.r.t. 
x0,t−1 and x j,t−1. Since Pt−1 and Pt differ only in the ele-
ments x0,t−1 and x j,t−1 (Pt−1 contains x j,t−1 whereas Pt contains 
x0,t−1), then π̄g(Pt−1)K (Pt |Pt−1) = π̄g(Pt)K (Pt−1|Pt), which is 
precisely the detailed balance condition.

Appendix E. Ergodicity of the parallel schemes based on multiple 
candidates

Similarly as in PMC, the parallel Ensemble MCMC (P-EnM) and 
Multiple Try Metropolis (P-MTM) schemes in Tables 5–6 are based 
on the particle approximations of the measure of the target. In 
both cases, L independent samples z1, . . . , zL drawn from ψ(x), 
i.e.,

z� ∼ ψ(x), (E.1)

for � = 1, . . . , L. Below, we show that P-EnM and P-MTM yield 
reversible chains with stationary density the generalized pdf π̄g , 
proving the detailed balance condition is satisfied [4].

E.1. Parallel Multiple Try Metropolis

In P-MTM, we can define the particle approximation based on 
the set {z1, . . . , zL}, i.e.,

π̂ (L)(z) =
L∑

�=1

β�δ(z − z�), (E.2)

where the normalized weights β� ’s are given in Eq (10). Note that, 
the expression above coincides with Eq. (B.4). Let us also denote 
as the matrix

Z¬k = [z1, . . . , zk−1, zk+1, . . . , zL],
containing all the samples z� ’s with the exception of zk . We de-
note as Kn(xn,t |xn,t−1) is the MTM kernel of n-th chain, namely, 
Kn(z|x) is the probability of the n-th chain of jumping from the 
state x = xt−1 to z = zk ∈ {z1, . . . , zL} (for simplicity, we consider 
here only the case z 
= x). Note that all the z� ’s are both drawn 
and resampled independently (see steps 2(a) and 2(b) in Table 6). 
Thus, the conditional probability Kn(z|x) can be expressed as

Kn(z = zk|x) =
L∑

�=1

Kn(zk|x,k = �),

= L

∫
DL−1

[
L∏

�=1

ψ(z�)

]
π̂

(L)
MT M(zk) αn(x, zk|Z¬k) dZ¬k

for z 
= x, where the function αn is given in Eq. (11) and we have 
considered the case x and z (the case, z = x is straightforward). 
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Fig. E.10. A graphical representation of the several parallel MTM schemes with N = 2 chains and L = 3 tries. The BI-MTM scheme in (d) requires only 6 evaluations of the 
target pdf and 2 multinomial sampling steps considering two iterations, t − 1 and t .
The factor L is due of the exchangeability among the L random 
candidates. Thus, we can also write

π̄ (x)Kn(zk|x) =

Lπ̄ (x)ψ(zk)

∫
DL−1

⎡
⎣ L∏

�=1;�
=k

ψ(z�)

⎤
⎦βkαn(x, zk|Z¬k) dZ¬k,

= L

Z
π(x)π(zk)

∫
DL−1

⎡
⎣ L∏

�=1;�
=k

ψ(z�)

⎤
⎦

× 1∑L
�=1

π(z�)
ψ(z�)

αn(x, zk|Z¬k) dZ¬k,

where we have also used the equality π̄ (x) = 1
Z π(x). Replacing

αn(x, zk|Z¬k) = min

[
1,

∑L
�=1

π(z�)
ψ(z�)∑L

�=1
π(z�)
ψ(z�)

− π(zk)
ψ(zk)

+ π(x)
ψ(x)

]
,

in the expression (E.3) and with some simple rearrangements, we 
obtain

π̄ (x)Kn(zk|x)

= L

Z
π(x)π(zk)

∫
DL−1

⎡
⎣ L∏

�=1;�
=k

ψ(z�)

⎤
⎦

× min

[
1∑L

�
=k
π(z�)
ψ(z�)

+ π(zk)
ψ(zk)

,
1∑L

�
=k
π(z�)
ψ(z�)

+ π(x)
ψ(x)

]
dZ¬k.

We can observe that, in equation above, we can exchange the po-
sition of the variables x so that zk and the expression does not 
change. So that we can write

π̄ (x)Kn(zk|x) = π̄ (zk)Kn(x|zk), (E.3)

for all n = 1, . . . , N . The expression above is the so-called detailed 
balance condition [4]: since it holds for all n, the complete horizon-
tal MTM process has π̄g as invariant pdf.
E.1.1. Important observations and Block Independent MTM
First of all, note that with respect to a standard parallel multiple 

try approach, the novel P-MTM scheme generates only L candi-
dates at each iteration, instead of N L samples. Indeed, P-MTM 
“recycles” the samples z1, . . . , zL from the independent proposal 
pdf ψ(x), using them in all the N chains. Namely, in P-MTM, at 
one iteration, the different MTM chains share the same set of tries. 
However, looking a single chain, each time L new samples are 
drawn from ψ(x) so that the chain is driven exactly from a stan-
dard (valid) MTM kernel. Figs. E.10(a) and (b) compare graphically 
the standard parallel MTM approach and the P-MTM scheme (with 
N = 2 chains and L = 3 tries). Observe that, in Fig. E.10(a), 12 new 
evaluations of the target are needed whereas only 6, in Fig. E.10(b).

Using the same arguments, the method remains valid if only 
one resampling step is performed at each iteration, providing 
one z∗: in this case the same z∗ is tested in the different accep-
tance tests of the N parallel MTM chains, at the same iteration 
(exactly as in Table 3 and Fig. 4 for MH kernels). Fig. E.10(c) shows 
this case. In order to reduce the possible loss of the diversity, since 
several chains could jump at the same new state z∗ , an alternative 
strategy can be employed: the Block Independent MTM (BI-MTM) 
algorithm described in Table E.13. Since the proposal ψ is inde-
pendent and then fixed, before a block of N transitions, we can 
draw N L tries from ψ(x). Then, we can divide them in N sets 
S j , with j = 1, . . . , N and select one sample from each set, ob-
taining {zk1 , . . . , zkN } with zk j ∈ S j . Then, we use N different per-
mutations of {zk1 , . . . , zkN } for performing N iterations of the N
parallel chains, providing a better mixing with respect to the case 
in Fig. E.10(c). This strategy, i.e., the BI-MTM scheme, is perfectly 
equivalent to the previous one, shown in Fig. E.10(c), from a the-
oretical and computational point of view. BI-MTM is represented 
graphically in Fig. E.10(d).

E.2. Parallel ensemble MCMC

Let us consider now the method in Table 5. In this case, the 
particle approximation is

π̂
(L+1)
n (z) =

L∑
�=1

α�δ(z − z�) + αL+1δ(z − xn,t−1)

=
L+1∑

α�δ(z − z�), (E.4)

�=1
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Table E.13
Block Independent Multiple Try Metropolis (BI-MTM) algorithm for N parallel chains.

1. Let N be the total number of parallel MTM chains and T H be the total number of iterations of each chain, 
such that T H

N ∈ N.
Choose a number of tries L. sSet t0 = mT V + (m − 1)T H if BI-MTM is used within O-MCMC. Otherwise, set 
t0 = 0.

2. For each block b = 1, . . . , B = T H
N do:

(a) Draw N L i.i.d. candidates z(h)
1 , . . . , z(h)

L ∼ ψ(x), for h = 1, . . . , N .

(b) Draw one sample zkh from each set Sh = {z(h)
1 , . . . , z(h)

L } for h = 1, . . . , N , with probability

β
(h)
� =

π(z(h)
� )

ψ(z(h)
� )∑L

�=1
π(z(h)

� )

ψ(z(h)
� )

.

Thus, finally we have N different samples, {zk1 , . . . , zkN }, such that zkh ∈ Sh for h = 1, . . . , N .
(c) Create the circular permutations vn, j ∈ {zk1 , . . . , zkN } as defined in Eq. (12).
(d) For t = (b − 1)N + 1 + t0, . . . , bN + t0 (i.e., exactly N transitions):

i. Set j = t − (b − 1)N − t0 (so that j = 1, . . . , N , in one block).
ii. For n = 1, . . . , N:

A. Set xn,t = vn, j , with probability

αn(xn,t−1,vn, j) = min

⎡
⎢⎢⎣1,

∑L
�=1

π(z( j)
� )

ψ(z( j)
� )∑L

�=1
π(z( j)

� )

ψ(z( j)
� )

− π(vn, j )

ψ(vn, j )
+ π(xn,t−1)

ψ(xn,t−1)

⎤
⎥⎥⎦ .

Otherwise, set xn,t = xn,t−1.
iii. Set Pt = {x1,t , . . . , xN,t }.
where zL+1 = xn,t−1. In this case, for a given n = 1, . . . , N , the 
conditional probability Kn(z = zk|x), where x = xn,t−1 and zk ∈
{z1, . . . , zL, zL+1 = xn,t−1}, is given by

Kn(zk|x) =
L∑

�=1

Kn(zk|x,k = �),

= L

∫
DL−1

[
L∏

�=1

ψ(z�)

]
π̂

(L+1)
n (zk) dZ¬k, (E.5)

for z 
= x. After some simple rearrangements (similarly in P-MTM) 
and using the formula of the weights in Eq. (8), we obtain

π̄ (x)Kn(zk|x)

= Lπ̄ (x)ψ(zk)

∫
DL−1

⎡
⎣ L∏

�=1,�
=k

ψ(z�)

⎤
⎦

×
π(zk)
ψ(zk)∑L

�=1
π(z�)
ψ(z�)

+ π(x)
ψ(x)

dZ¬k,

= L

Z
π(x)π(zk)

∫
DL−1

⎡
⎣ L∏

�=1,�
=k

ψ(z�)

⎤
⎦

× 1∑L
�=1;�
=zk

π(z�)
ψ(z�)

+ π(zk)
ψ(zk)

+ π(x)
ψ(x)

dZ¬k.

Observing the last equation, we can clearly replace the variable x
with zk and vice versa, without changing the expression. Hence, 
finally we obtain

π̄ (x)Kn(zk|x) = π̄ (zk)Kn(x|zk),

for all n = 1, . . . , N , that is the detailed balance condition. For fur-
ther considerations, see Appendix E.1.1 above.
Appendix F. Supplementary material

Supplementary material related to this article can be found on-
line at http://dx.doi.org/10.1016/j.dsp.2016.07.013.
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