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Abstract

In this document, we present a preliminary Matlab implementation of the Layered
Adaptive Importance Sampling (LAIS) scheme. We mainly focus on an non-iterative
implementation but a more specific iterative version is also provided. We also introduce
briefly the framework and discuss the benefit of LAIS with respect to other Monte Carlo
techniques. Note that the code is not optimized.
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1 Introduction

Monte Carlo methods are widely used in signal processing, communications, machine learning and
many other scientific disciplines [13, 41, 1, 38, 39, 24, 19]. Importance sampling (IS) [24, 39] and
MCMC algorithms [1, 11, 20, 22, 32] are well-known Monte Carlo (MC) methodology that can
be used to compute integrals involving a complicated multidimensional target probability density
function (pdf), π(x) with x ∈ Rd. The MCMC techniques generate a Markov chain with invariant
density the target pdf, using a simpler proposal densityq(x). The IS method proceeds by drawing
samples from the proposal pdf, q(x), and assigning weights to them according to the ratio between

the target and the proposal, i.e., w(x) = π(x)
q(x)

.

Benefits and issues of MCMC and IS. On the one hand, denoting the state of the chain
as xt, an MCMC algorithm using a random walk proposal pdf q(x|xt) = q(x−xt) has an intrinsic
explorative behavior that is one of the reason of MCMC success. However, it is difficult to
determine the burn-in period of the MCMC convergence. Moreover, it is complicate to estimate
the marginal likelihood given the MCMC outputs and ensuring the ergodicity of and adaptive
MCMC is not an easy task. On the other hand, the IS approach easily provides and estimation
of the marginal likelihood. Although the validity of the IS approach is guaranteed under mild
assumptions, the variance of the estimator depends critically on the discrepancy between the
proposal and the target densities. An adaptive strategy is required to provide robust results (the
theoretical analysis for adaptive IS is usually simpler than in adaptive MCMC schemes).



Adaptive Importance Sampling. In order to solve this issue, several works are devoted to
the design of adaptive IS (AIS) schemes [6], where the proposal density is updated by learning
from previously generated samples [39]. Some well-known methods available in the literature are
Population Monte Carlo (PMC) [8, 7, 21, 17], Adaptive Multiple Importance Sampling (AMIS)
[10], Adaptive Population Importance Sampling (APIS) [26, 27], or Layered Adaptive Importance
Sampling (LAIS) [30, 29, 28] and other alternatives using gradient imformation of the target pdf
[18, 40].

All of them are iterated importance samplers, and most of them employ the multiple
importance sampling (MIS) approach [15, 14, 16] for building the IS estimators. In all of these
schemes, the proposal or the population of proposals is updated at each iteration, using the
statistical information that has been collected from the target in the previous iterations through
the samples generated. However, the aforementioned methods differ substantially, both in the
specific MIS scheme used to perform the estimation (different weighting functions can be employed
within a MIS framework, as shown in [15]) and in the adaptation procedure used to update the
proposals.

Layered Adaptive Importance Sampling (LAIS) [30]. LAIS is formed by two Monte
Carlo levels. An upper layer produces MCMC outputs, that are used as parameters in an IS scheme
(lower layer). More specifically, the MCMC outputs are employed as means of the proposal pdfs
used in the lower layer, i.e., in the IS scheme. In its iterative version, LAIS can be interpreted
as an adaptive importance sampling driven by an MCMC procedure. However, considering a
non-iterative implementation, it can be also seen as a static importance sampling using multiple
different proposal pdfs, whose means has been previously selected by some MCMC procedure.

LAIS combines the benefits of the IS and MCMC approaches: explorative behavior,
automatic selection of the location parameters of the algorithm, and easy estimation of
the marginal likelihood.

A specific LAIS algorithm is specified by the specific choice of the upper layer (i.e., the
MCMC procedure) and by the specific choice the lower layer (i.e., the MIS procedure).

Other attempts have been made to successfully marry the IS and MCMC approaches,
producing hybrid techniques: IS-within-MCMC [2, 5, 23, 25, 35, 33] or MCMC-within-IS
[3, 4, 9, 34, 36, 37, 42]. Related reviews and tutorials about IS, AIS, and Multiple IS (MIS)
can be found at [6, 15, 31]. Some related slides can be found at

http://www.lucamartino.altervista.org/LAIS_pres_Completa.pdf

In this Matlab implementation, we focus on independent parallel Metropolis-Hastings (MH)
chains in upper level, and we consider three different MIS strategies.

The Matlab code of the non-iterative version of LAIS can be found at

http://www.mathworks.com/matlabcentral/fileexchange/
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59952-non-iterative-implementation-of-layered-adaptive-importance-sampling--lais-

or

http://www.lucamartino.altervista.org/LAIS_non_iterative_code.zip

The Matlab code of a specific iterative implementation of LAIS can be found at

http://www.mathworks.com/matlabcentral/fileexchange/

58368-parallel-interacting-markov-adaptive-importance-sampling--pi-mais--algorithm

or

http://lucamartino.altervista.org/CODE_LAIS_v03.zip

Note that the code is not optimized.

2 Static Importance Sampling

Let us consider the variable of interest, x ∈ X ⊆ Rd, and the target density

π̄(x) =
1

Z
π(x), (1)

that usually corresponds to a posterior pdf, i.e., the density of the variable of interest x given the
collected data y,

π̄(x) = p(x|y).

Our goal is computing efficiently some moment of x,

I = Eπ[f(X)] =

∫
X
f(x)π̄(x)dx =

1

Z

∫
X
f(x)π(x)dx, (2)

and the so-called marginal-likelihood (a.k.a., Bayesian evidence) [39],

Z = p(y) =

∫
X
π(x)dx, (3)

useful for tuning parameters or, more in general, for model selection purpose. We consider f(x)
can be any square-integrable function. In general, we are not able to draw samples from π̄(x).
The importance sampling technique is based on the following equality

I = Eq[w(X)f(X)] =
1

Z

∫
X
f(x)w(x)q(x)dx, (4)

where q is a proposal pdf (simpler to draw from and with heavier tails than π̄), and

w(x) =
π(x)

q(x)
. (5)
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Hence, drawing M samples x(1), . . . ,x(M) from q(x), the standard IS estimator when Z is known
is given by

Î =
1

M

1

Z

M∑
m=1

w(m)f(x(m)), (6)

where w(m) = w(x(m)) = π(x(m))

q(x(m))
. Alternatively, when Z is unknown the standard self-normalized

IS estimator is

Ĩ =
M∑
m=1

w̄(m)f(x(m)), (7)

where w̄(m) = w(m)∑M
`=1 w

(`) .

2.1 Optimal proposal density

Given a specific function f(x), the optimal proposal q that minimizes the variance of the IS

estimator is q(x) ∝ |f(x)|π̄(x) (at least, when Î is applied). However, in practical applications we
are often interested in computing expectations w.r.t. several f ’s. Namely, we are interesting in
a numerical approximation of π̄. In this context, a more appropriate strategy is minimizing the
variance of the importance weights w(m) for m = 1, . . . ,M . In this case, the minimum variance is
attained when q(x) = π̄(x) [12].

2.2 Multiple Importance Sampling

As explained above, we are interested in choosing the proposal pdf q as close as possible to π̄.
However, K different proposal pdfs can be also considered, q1, . . . , qK [15]. In this case, drawing
KM samples

{x(m)
k }

M
m=1 ∼ qk(x), k = 1, . . . , K,

there are several valid choices of weights

w(m) =
π(x

(m)
n )

Φk(x
(m)
k )

. (8)

Namely, several choices of the denominator Φk(x) that lead to an unbiased estimator Î in Eq. (6)
are possible, as shown in [15]. Two examples are the standard IS weights, i.e.,

Φk(x
(m)
k ) = qk(x

(m)) =⇒ w(m) =
π(x

(m)
n )

qk(x(m))
, (9)

and the Full Deterministic Mixture (DM) approach, i.e.,

Φk(x
(m)
k ) =

1

K

K∑
j=1

qj(x
(m)
k ) =⇒ w(m) =

π(x
(m)
n )

1
K

∑K
j=1 qj(x

(m)
k )

. (10)

The full DM strategy provides better performance but it is more costly than the standard IS
approach [15]. Other intermediate solutions called partial DM strategies [14, 16] are possible,
which in general provide good compromises between performance and computational cost.
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3 Matlab implementation of Layered Adaptive

Importance Sampling (LAIS)

A generic adaptive importance sampler is an iterative algorithm where a set of N proposals are
adapted over time, t = 1, . . . , T . When a population of proposal pdfs is employed, at the t-th
iteration, the set of available proposals is {q1,t, . . . , qN,t}. These proposals can change over time,
not only updating their parameters but even completely changing their shape (i.e., the family of
the distribution), and we assume that all the qn,t’s have heavier tails than the target π̄ [39]. We
only consider location-scale densities such that each qn,t is completely characterized by a mean
vector, µn,t, and a covariance matrix, Cn. In LAIS, we focus on the adaptation of the mean
vectors, i.e., the µn,t’s. Table 1 summarizes a non-iterative version of LAIS.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% NON−ITERATIVE IMPLEMENTATION OF %%%%%%%
%%%%%%% LAYERED ADAPTIVE IMPORTANCE SAMPLING (LAIS) %%%%%%%
%%%%%%% (see reference below) %%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% L. Martino, V. Elvira, D. Luengo, J. Corander,
%%%"Layered Adaptive Importance Sampling", Statistics and Computing, 2016.
%%% doi:10.1007/s11222−016−9642−5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all
close all
clc
help MAIN
%%%
typeTar=1;%%% typeTar: type of the target distribution

%%% typeTar=1,2,3 =>DIM=2
%%% typeTar=4 =>DIM=4
%%% typeTar=5 =>DIM=10
%%% Build your inference problem, changing target.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% upper layer: parallel MH chains %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% number of parallel chains
N=100; %%% N>=1
%%%% number of vertical and horizontal steps per epoch
T=20; %%% T>=1
sig prop=5; %%std of the proposal pdfs of upper layer
[mu tot,mu sp,mu time]=Upper Layer ParMH(N,T,sig prop,typeTar);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% lower layer: MIS schemes %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
M=100; %%% M>=1 %%% samples per proposal pdfs in the lower layer
%sig lower layer=3+7*rand(1,N*T);%% possible random selection of the scalar ...

parameters
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Table 1: Non-iterative version of LAIS

Initialization: Choose

1. N = number of different proposal pdfs (in the lower layer) per iteration.

2. T = iterations of the MCMC algorithms in the upper layer.

3. qn,0 proposal pdfs with means µn,0 and covariance matrices Cn, n = 1, . . . , N .

Upper Layer - Adaptation of the means: Apply T -steps of a suitable MCMC procedure to
update the mean vectors,

{µn,0}Nn=1 −→ {µn,1}Nn=1 −→ · · · {µn,t}Nn=1 −→ {µn,t+1}Nn=1 −→ · · · {µn,T }Nn=1.

Lower Layer - MIS scheme:

1. Sampling: Draw M samples x
(1)
n,t, . . . ,x

(M)
n,t from each of the N proposal pdfs in the population

{q1, . . . , qN}, i.e.,

x
(m)
n,t ∼ qn,t(x|µn,t,Cn),

for m = 1, . . . ,M .

2. Weighting: Weight the samples, {x(m)
n,t }Mm=1,

w
(m)
n,t =

π(x
(m)
n,t )

Φn,t(x
(m)
n,t )

, (11)

according to a proper function Φn,t that leads to unbiased IS estimators Î [24, Section
2.5.4][30, 15].

Output: Return {x(m)
n,t , w

(m)
n,t } for all n = 1, . . . , N , m = 1, . . . ,M and t = 1, . . . , T . The normalized weights

will be

w̄
(m)
n,t =

w
(m)
n,t∑T

τ=1

∑N
j=1

∑M
r=1 w

(r)
j,τ

. (12)

sig lower layer=13*ones(1,N*T);
%%%%%%%%%%
%%% SUGGESTION: USE typeDEN=3 as in PI−MAIS (see article)
typeDEN=3; %%%% type of the MIS scheme
%%%% 1 − Standard IS
%%%% 2 − Full DM
%%%% 3 − Partial DM − spatial (suggested)
if typeDEN==1
disp(' ')
disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')
disp('We suggest to use the Partial DM approach (typeDEN=3)')
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disp('and to avoid typeDEN=1, specially for the estimation of the marginal ...
likelihood')

disp('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')
disp(' ')
pause(1)

end
[x est,MarginalLike,x IS,W]=Lower Layer IS(mu tot,mu sp,mu time,N,T,M, ...
sig lower layer,typeDEN,typeTar);

Listing 1: MAIN.m (non-iterative implementation).

Upper Layer: Some MCMC procedure is applied to obtain all the means {µn,t} with
n = 1, . . . , N , and t = 1, . . . , T . In this implementation, we have considered independent parallel
Metropolis-Hastings (MH) chains. In this scenario, N is also the number of parallel chains.

In the upper layer, the employed MCMC scheme can address a target density different from
the posterior pdf (for instance, a tempered target). In this specific implementation, we have
considered MCMC addressing the true target pdf π̄(x) (but other choices are possible).

In LAIS, the mean parameters selected the upper layer are chosen independently from the
Monte Carlo outputs in the lower layer.

The total number of mean-location parameters (and proposal pdfs) is NT .

function [x tot,x,x t]=Upper Layer ParMH(N,T,sigprop,typeTar)
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% LAIS − upper level %%%%%%%
% %% parallel MH chains %%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % L. Martino, V. Elvira, D. Luengo, J. Corander,
% %"Layered Adaptive Importance Sampling",
% % Statistics and Computing, 2016. doi:10.1007/s11222−016−9642−5
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % N= number of chain
% % sigprop = std of the proposal pdfs of the vertical chains
% % x tot= generated samples (states of the chains)
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if N<2

N=2;
end
if T<1

T=1;
end

disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('****−****−****−****−****−****−****−****')
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disp('**** UPPER−LAYER *****')
disp('****−****−****−****−****−****−****−****')
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp(['Number of chains= ' num2str(N), ' '])
disp(['Iterations= ' num2str(T)])
disp(['Total number of generated mean parameters= ' num2str(N*T)])

disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% TARGET %%%%%%%%%%%%%%%%%%%%%
%%%%typeTar: type of the target distribution %%% change target.m
[nothing,nothing,DIM]=target(NaN,typeTar); %%%%%% DIM= dimension
logf=@(x) target(x,typeTar);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% parameters %%%%%%%%%%%%%%%%%%%%%
initialPoints=−4+8*rand(N,DIM);
x{1}=initialPoints;
SIGMA=sigprop.ˆ2*eye(DIM);
x tot=[];
Vbef=logf(x{1});
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% START %%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%% PARALLEL CHAINS %%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for t=2:T+1

x{t}=mvnrnd(x{t−1},SIGMA);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% evaluating target %%%%%%%%%%%%
%%%% Vbef=logf(x{t−1}); %%% THIS EVALUATION CAN BE AVOIDED, storing the ...

previous one
Vnow=logf(x{t});

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[d1,d2]=size(Vbef);
if d1>d2

Vbef=Vbef';
Vnow=Vnow';

end
rho=exp(Vnow−Vbef);
alpha=min([ones(1,N);rho]);
%%% Test %%%
u=rand(1,N);
test=(u<=alpha);
vec aux=(x{t}−x{t−1}).*repmat(test',1,DIM);
vec aux2=(Vnow−Vbef).*test;
x{t}=x{t−1}+vec aux;
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Vbef=Vbef+vec aux2;
Vbef=Vbef';

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x tot=[x tot x{t}'];

end %%% end for − t
x{1}=[];
x=x(˜cellfun('isempty',x));

for i=1:N
x t{i}=x tot(:,i:N:end);

end

Listing 2: Upper-Layer-ParMH.m (non-iterative implementation).

Lower Layer: M independent samples are drawn from each proposal in Step 1 of Table 1, i.e.,

x
(m)
n,t ∼ qn,t(x|µn,t,Cn), (13)

for m = 1, . . . ,M , n = 1, . . . , N and t = 1, . . . , T . Then the weight

w
(m)
n,t =

π(x
(m)
n,t )

Φn,t(x
(m)
n,t )

, (14)

is associated to each one of these NMT samples. In the denominator, we have a function Φn,t,
properly chosen in such a way that the estimator of Eq. (6) is unbiased [24, Section 2.5.4], [30, 15].

The total number of weighted samples involved in the IS estimators are K = NMT .

In this non-iterative MATLAB code of LAIS,
http://www.lucamartino.altervista.org/LAIS_non_iterative_code.zip

we have implemented 3 possible denominator functions Φn,t(x
(m)
n,t ):

• typeDEN=1: standard IS approach,

Φn,t(x
(m)
n,t ) = qn,t(x

(m)
n,t |µn,t,Cn), (15)

• typeDEN=2: Full DM approach,

Φn,t(x
(m)
n,t ) =

1

NT

T∑
τ=1

N∑
j=1

qj,τ (x
(m)
n,t |µj,τ ,Cj), (16)

• typeDEN=3: Partial DM-Spatial approach,

Φn,t(x
(m)
n,t ) =

1

N

N∑
j=1

qj,t(x
(m)
n,t |µj,t,Cj). (17)
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The choice typeDEN=1 is the faster alternative but it also provides the worst performance
(specially, in multimodal scenarios).

The choice typeDEN=2 provides the best performance but also the greatest computational
cost.

The choice typeDEN=3 is an efficient compromise between good performance and
computational cost [15, 14, 16].

The specific LAIS scheme with parallel MH chains in the upper layer and a partial-spatial
DM typeDEN=3 is specially suitable for multimodal scenarios.

function [x est,MarginalLike,x IS,W]=Lower Layer IS(mu,mu sp,mu time,...
N,T,M,sig lower layer,typeDEN,typeTar)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% Lower Layer of LAIS %%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % L. Martino, V. Elvira, D. Luengo, J. Corander,
% %"Layered Adaptive Importance Sampling",
% % Statistics and Computing, 2016. doi:10.1007/s11222−016−9642−5
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%
%%% typeDEN 1: 'StandIS' −− 2: 'FullDM' −−− 3: 'PartialDM−Spatial'
%%%%% %%%%% %%%%% %%%%% %%%%% %%%%% %%%%% %%%%% %%%%% %%%%% %%%%% %%%%%
Np=N*T;
%%%%% %%%%% %%%%% %%%%% %%%%% %%%%% %%%%% %%%%% %%%%% %%%%% %%%%% %%%%%

disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('****−****−****−****−****−****−****−****')
disp('**** LOWER−LAYER *****')
disp('****−****−****−****−****−****−****−****')
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp(['Number of proposal pdfs used in MIS = ' num2str(Np) ' '])
disp(['Number of samples per proposal= ' num2str(M)])
disp(['Total number of used samples = ' num2str(Np*M)])
switch typeDEN

case 1
aux='Standard IS';
NumDen=1;
NumProp=1;

case 2
aux='Full DM';
NumDen=1;
NumProp=N*T;

case 3
aux='Partial DM − Spatial';
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NumDen=T;
NumProp=N;

end
disp(' ')
disp(['Type IS−Denominator= ' aux])
disp(['Number of different denominators = ' num2str(NumDen)])
disp(['Number of proposal pdfs in each denominator = ' num2str(NumProp)])

disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
%%%% only for getting the dimension
[nothing,nothing,DIM,mu true,Marglike true]=target(NaN,typeTar); %%%%%% DIM= ...

dimension
%%%% target distribution %%% change target.m
logf=@(x) target(x,typeTar);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% normalizing constant proposal ==> 1/(sqrt((2*pi).ˆDIM*det(SIGMA p)))
count=1;
t=1;
n=1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for j=1:Np
%%%% generated samples − lower layer %%%%%%%%%%%%
SIGMA p=sig lower layer(j)*eye(DIM);
x IS(:,M*(j−1)+1:M*j)=mvnrnd(mu(:,j),SIGMA p,M)';

%%%%%% %%%%%% %%%%%%
if typeDEN==1 %%% 'StandIS'
%%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%%
%%%% evaluate j−th proposal − only own samples %%%%
%%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %% %%
P(M*(j−1)+1:M*j)=mvnpdf(x IS(:,M*(j−1)+1:M*j)',mu(:,j)',SIGMA p);
end
%%%%%% %%%%%% %%%%%%
if typeDEN==3

x ISsp{t}(:,M*(count−1)+1:M*count)=x IS(:,M*(j−1)+1:M*j);
count=count+1;
if mod(j,N)==0
t=t+1;
count=1;

end
end
%%%%%% %%%%%% %%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% evaluate target %%%%
logNUM(M*(j−1)+1:M*j)=logf(x IS(:,M*(j−1)+1:M*j)')';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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switch typeDEN
%%%%%%%%%%%%%%%%%%%%%%
case 1 %%% 'StandIS'

logDEN=log(P);
%%%%%%%%%%%%%%%%%%%%%%
case 2 %%% 'FullDM' (evaluating 'All−in−All')
%%%%%%%%%%%%%%%%%%%%%%

for j=1:Np

if mod(j,10)==0
disp(['computing IS ...

denominators...',num2str(min([fix(j*100/Np) 100])) '%'])
end

for k=1:Np
P(k,M*(j−1)+1:M*j)=mvnpdf(x IS(:,M*(j−1)+1:M*j)',mu(:,k)',SIGMA p);
%%% P size N*T \times N*T*M
%%% row => evaluation one proposal pdf at all the samples
%%% (row index=> denote one proposal pdf)
%%% (column index=> denote one sample)

end
end

P=mean(P);
logDEN=log(P);

%%%%%%%%%%%%%%%%%%%%%%
case 3 %%% 'Partial DM− Spatial'
%%%%%%%%%%%%%%%%%%%%%%

for t=1:T
if mod(t,10)==0

disp(['computing IS ...
denominators...',num2str(min([fix(t*100/T) 100])) '%'])

end

for n=1:N
Maux(n,:)=mvnpdf(x ISsp{t}',mu sp{t}(n,:),SIGMA p);

end
a(t,:)=log(mean(Maux));

end
logDEN= reshape(a',1,N*T*M);

end %%% build denominator
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% WEIGHTING %%%%%%%%%%%
W=exp(logNUM−logDEN);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% ESTIMATIONS %%%%%%%%%
MarginalLike=mean(W); %%% estimation of the marginal likelihood
disp(' ')
disp('RESULTS')
disp(' ')
disp(['Marginal likelihood− true value = ', num2str(Marglike true)])
disp(['Marginal likelihood− estimated value = ', num2str(MarginalLike)])
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SEmargLike=(Marglike true−MarginalLike)ˆ2;
disp(['Square Error in the estimation of marginal likelihood = ', ...

num2str(SEmargLike)])
%%%%%%%%%%%%
Wn=W./(Np*M*MarginalLike);
x est=sum(repmat(Wn,DIM,1).*x IS,2);
disp(' ')
disp(['Expected Value of the posterior/target pdf − True Values = ...

',num2str(mu true')])
disp(['Expected Value of the posterior/target pdf−Estimated Values= ...

',num2str(x est')])
SE est=mean((mu true−x est).ˆ2);
disp(['Square Error in the estimation of the Expected Value = ', num2str(SE est)])
%%%%%%%%%%%%%%
%%%% plot %%%%
if typeTar==1 | typeTar==2 | typeTar==3
if typeTar==1

hgload('contourGauss5modes.fig');
end
hold on
plot(x IS(1,:),x IS(2,:),'g.','MarkerEdgeColor','g','MarkerFaceColor','g',...

'MarkerSize',1)
plot(mu(1,:),mu(2,:),'rs','MarkerEdgeColor','k','MarkerFaceColor','r',...

'MarkerSize',5)
axis([−22 22 −25 25])

end

Listing 3: Lower-Layer-IS.m (non-iterative implementation).

A specific iterative implementation of LAIS (employing parallel MH chains and typeDEN=3)
can be found at
http://lucamartino.altervista.org/CODE_LAIS_v03.zip

4 Numerical comparison

Let us consider a bivariate multimodal target pdf formed by a mixture of 5 Gaussians, i.e.,

π̄(x) =
1

5

5∑
i=1

N (x;νi,Σi), x ∈ R2, (18)

with means ν1 = [−10,−10]>, ν2 = [0, 16]>, ν3 = [13, 8]>, ν4 = [−9, 7]>, and ν5 = [14,−14]>,
and covariance matrices Σ1 = [2, 0.6; 0.6, 1], Σ2 = [2, −0.4;−0.4, 2], Σ3 = [2, 0.8; 0.8, 2],
Σ4 = [3, 0; 0, 0.5], and Σ5 = [2, −0.1;−0.1, 2].

This target corresponds to the choice typeTar=1 in the code of the non-iterative LAIS
version.

The goal is to estimate, via Monte Carlo, the mean of π̄ (the true value is [1.6, 1.4]>), using
different adaptive algorithms. For the sake of simplicity, we also consider Gaussian proposals.
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Table 2: MSE in the estimation of the mean of the target. The best results for each value of σ
are highlighted in bold-face.

Algorithm σ= 1 σ= 5 σ= 10 σi,j ∼ U([1,10])

PMC [8] 107.58 0.6731 0.0744 0.0732

AMIS [10] 121.21 0.8640 0.0121 0.7328

APIS [27] 2.45 0.2424 0.0185 0.0045

LAIS [30] 0.0021 0.0075 0.0121 0.0049

GAPIS [18] 0.0023 0.0104 0.0143 0.0040

We have tested APIS, AMIS, standard PMC, gradient APIS (GAPIS), and LAIS. At each run,

the initial means of the proposals are selected uniformly within a square µ
(0)
i ∼ U([−4, 4]×[−4, 4]).

Initially, the same isotropic covariance matrix, C
(0)
i = σ2I2, is used for every proposal. We test

different values of σ ∈ {1, 5, 10}. Then, different non-isotropic diagonal covariance matrices,
Ci = diag(σ2

i,1, σ
2
i,2) with σi,j ∼ U([1, 10]) for i = 1, . . . N and j ∈ {1, 2}, are also tested. In the

upper layer in LAIS, we use random walk Gaussian proposal pdfs with the covariance matrices as
in the lower layer, i.e., Ci.

In this example, all the algorithms adapt only the means of the proposals, except for AMIS,
that also adapts the covariance matrix. We use N = 100 for all the methods, except for AMIS
(we recall that N = 1 in this case). In order to obtain a fair comparison, for each method T
is selected in such a way that the total number of evaluations of the target is always fixed to
E = 2 ·105. Table 2 shows the mean squared error (MSE) of the estimation of the first component
of the mean (averaged over 500 runs). We have considered the best performance of each method
after testing several combinations of parameters, as described in [27, 30, 18]. Note that GAPIS
and LAIS provide the best results in general, whereas AMIS and APIS are also competitive when
σ = 10 and σi,j ∼ U([1, 10]), respectively.

The advantages of applying LAIS are even more evident in the estimation of the marginal
likelihood (which is also a very hard task using MCMC).
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