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Introduction: framework

In many applications, we receive several observations y and we are interested to
obtain information to a related variable z. Assuming a model (the likelihood
p(y|z,θ)) and a prior density p(z,θ) over the unknown variables, in Bayesian
inference we desire to study the posterior pdf

p(z,θ|y) =
p(y|z,θ)p(z,θ)

p(y)
∝ p(y|z,θ)p(z,θ), (1)

where θ are parameters of the model. We are interested to inference x = [z,θ]T

computing the mean/mode of the posterior or confidence intervals, for instance.
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In some cases, the parameters θ can be integrated out

p(z|y) ∝
Z

Θ
p(y|z,θ)p(z,θ)dθ. (2)

Namely, they could be removed from the analysis, x = z.

The amount

p(y) =

Z
X

p(y|x)p(x)dx = p(y|model)

is called Bayesian evidence and is really important for model selection.
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Why Monte Carlo?

Monte Carlo approach

In general, the posterior pdf p(x|y) is very complicated and it is impossible to
calculate analytically any moments, modes or confidence intervals.

Monte Carlo (MC) approach: we can draw samples {x(i)}N
i=1 from φ(x) = p(x|y)

in order to approximate mean, variance, probabilities etc. The density φ(x) is
usually called target pdf.

Problem: in general, we are not able to draw from the target φ(x).

MC sampling method: any mechanism/procedure that converts a sample
ξ′ ∼ π(ξ) (proposal pdf) to a sample x′ distributed according to the target
φ(x).

Sampling 
method 

ξ� ∼ π(ξ) x� ∼ φ(x)
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MCMC

Within Monte Carlo: Markov Chain Monte Carlo (MCMC) techniques are very
powerful methods to produce samples from general target pdf. They generate a
Markov chain with stationary density our target density.

We denote as K(xt |xt−1) the kernel of the chain (probability to obtain a new
state xt given the previous one, xt−1).

€ 

x0

€ 

x1

€ 

xt−1… 

€ 

xt

€ 

xt+1

€ 

xt ~ φ(x) = p(x | y)
€ 

K(xt | xt−1)

… 

“burn-in” period 

Design a (standard) MCMC method ≡ Design a kernel K(xt |xt−1) such that
φ(x) is the invariant/stationary distribution.

(K(xt |xt−1) summarizes the steps of the corresponding algorithm)
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Applications

Range of applications

Applications of MCMC:

Bayesian inference (drawing from complicated posterior distributions)

stochastic optimizations (with some little variations in the corresponding
sampling methods; for instance, Metropolis-Hastings ⇐⇒ Simulated
annealing)

(MCMC/Monte Carlo approach can give some theoretical support to
some heuristic optimization methods.)
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Advantages and Drawbacks

Advantages of MCMC

Advantages of the MCMC techniques:

1 They can be applied to virtually any kind of target pdf (at any dimension
x ∈ Rn). In general, we just to be able to evaluate the target p(x|y), that
can be known up a normalizing constant.

2 There are also MCMC techniques to draw samples from target pdfs that
cannot be “completely” evaluated! (in this talk you will see an example).
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Advantages and Drawbacks

Drawbacks of MCMC

The drawbacks that we want to avoid/ improve:

1 The generated samples are correlated. We want to decrease the
correlation. Independent samples provide more statistical informations.

2 Convergence – “burn in” period. We want to speed up the convergence.
3 Due to the previous two factors, the chain can be trapped in some region

“of high probability” (like around a mode). We want to avoid it.

Actually, all the previous factors are provoked by the correlation.
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Invariant measure

Invariant/Stationary distribution

Given a random vector Xt ∈ D ⊆ Rm and transition probability (kernel)
function K(xt |xt−1), a stationary (invariant) probability density function
(pdf) ps (xt) fulfills the following conditionZ

D
K(xt |xt−1)ps (xt−1)dxt−1 = ps (xt). (3)

Note it is the same to build a joint pdf p(xt−1, xt) = K(xt |xt−1)ps (xt−1)
where the marginal pdfs ps (·) exactly coincide.

We want to design K(xt |xt−1) such that the invariant pdf ps (x) is exactly
the target pdf φ(x), i.e.,

ps (x) = φ(x) (4)
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Eigenfunctions

This problem is related to the search of eigenvalues and eigenfunctions in
the equation Z

D
K(y|x)q(x)dx = µq(y) (5)

where µ is an eigenvalue and q(·) is an eigenfunction (corresponding to
µ).

We are interested in eigenfunctions corresponding to µ = 1 (actually, our
problem is different: given a eigenfunction q(x) with eigenvalue µ = 1, we
want to find a suitable kernel K(y|x)).

We have 1 = µ1 > |µ2| ≥ |µ3| ≥ |µ4| ≥ ...
The eigenvalue µ2 determines the order of the convergence speed to the
eigenfunction corresponding to µ1 = 1.
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Balance condition

The balance (reversibility) condition

K(xt |xt−1)ps (xt−1) = K(xt−1|xt )ps (xt ) (6)

is a sufficient condition for the Markov chain to have a unique stationary
distribution.

Indeed, integrating both sides w.r.t. xt−1Z
D

K(xt |xt−1)ps (xt−1)dxt−1 =

Z
D

K(xt−1|xt )ps (xt )dxt−1,

Z
D

K(xt |xt−1)ps (xt−1)dxt−1 = ps (xt )

Z
D

K(xt−1|xt )dxt−1| {z }
1

,

Z
D

K(xt |xt−1)ps (xt−1)dxt−1 = ps (xt ).

If a pdf satisfies the balance condition, then it is invariant w.r.t. the kernel
K(xt |xt−1).

In this case, the chain is said reversible.
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Metropolis-Hastings (MH) method
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Metropolis-Hastings (MH) algorithm

The most famous MCMC technique is the Metropolis-Hastings (MH)
method.

Given an unnormalized target pdf φ(x) (x ∈ Rn), and a proposal pdf

π(xt |xt−1) (easy to draw from), the algorithm is the following:

1 For t = 0, choose arbitrarily x0.
2 Draw x∗ from π(xt |xt−1).
3 Accept the sample (movement) xt = x∗ with probability

α(xt−1, x
∗) = min

»
1,

π(xt−1|x∗)φ(x∗)

π(x∗|xt−1)φ(xt−1)

–
. (7)

4 Otherwise, xt = xt−1.
5 Set t = t + 1 and come back to step 2.
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Specific/trivial cases

Random Walk/independent proposal

There are two typical kind/class of the proposal pdf.

random walk proposal
Xt = Xt−1 + ε

for instance,
π(xt |xt−1) ∝ exp{−(xt − xt−1)2/2}.

(it is “shifted/moved” according to the previous state)

independent proposal for instance,

π(xt |xt−1) = π(xt ) ∝ exp{−x2
t /2}.

(independent from the previous state, it is “fix”)
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Specific/trivial cases

Symmetric proposal

If we choose a proposal such that

π(xt |xt−1) = π(xt−1|xt ), (for instance ∝ exp{−(xt − xt−1)2/2})

then the acceptance probability α is simplified. Indeed, in this case,

α(xt−1, x
∗) = min

»
1,

φ(x∗)

φ(xt−1)

–
.

This shows a clearly connection with the optimization methods.
if φ(x∗) ≥ φ(xt−1)→ α = 1,

if φ(x∗) < φ(xt−1)→ α = φ(x∗)
φ(xt−1)

.

x∗
xt−1

x∗

x

φ(x)α =
φ(x∗)

φ(xt−1)

α = 1

Hence, when we go up the movement is always accept, whereas we go down with probability α =
φ(x∗)

φ(xt−1)
. In the

Simulated Annealing, this probability vanishes to zero when t → +∞.
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Specific/trivial cases

Trivial case

If π(x) = φ(x) (we draw directly from the target), then

α(xt−1, x
∗) = min

»
1,
π(xt−1)φ(x∗)

π(x∗)φ(xt−1)

–
= min

»
1,
φ(xt−1)φ(x∗)

φ(x∗)φ(xt−1)

–
= 1.

clearly, we always accept the movement (this is the best and impossible
situation, in general).

In general, if the proposal is similar/close to the target then α is close to 1....but
α can be ≈ 1 also in other cases!! Therefore, α ≈ 1 is not always a “good
situation”.
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Considerations about α

Important consideration

€ 

xt = z

€ 

1−α

€ 

xt+1 ≠ z

€ 

α

From the figure, you can think that α ≈ 1 always diminishes the correlation.
But it is not true, in general.

With a proposal with very small variance −→ α ≈ 1 −→ very poor performance.

With a proposal with huge variance −→ α→ 0 −→ very poor performance.

There are several papers that study the optimal value of α with different
proposals, targets and situations. For instance, it is suggested α ≈ 0.45 for low
dim. and α ≈ 0.23 for high dim. problems [3, 1, 2].

(optimal variance ⇐⇒ optimal α)
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Kernel of the MH algorithm

Kernel of the MH

The kernel K(y|x) (probability to go from x to y) of the MH method is

K(y|x) = π(y|x)α(x, y) + δ(y − x)

Prob. of discarding a proposed sample y′z }| {„
1−

Z
D
π(y′|x)α(x, y′)dy′

«
, (8)

where α(x, y) = min
h
1, π(x|y)φ(y)

π(y|x)φ(x)

i
.

The target pdf φ(x) is invariant w.r.t. this kernel.

(just notation: observe that y here denotes a possible state, it is not a
observation/measurement!)
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Balance condition

Indeed, the kernel K(y|x) of MH fulfills the balance condition

K(y|x)φ(x) = K(x|y)φ(y) (9)

For x = y is trivial, we obtain φ(x) = φ(y).

For x 6= y, we have to verify that

π(y|x)α(x, y)φ(x) = π(x|y)α(y, x)p(y), (10)

π(y|x) min

»
1,
π(x|y)φ(y)

π(y|x)φ(x)

–
φ(x) = π(x|y) min

»
1,
π(y|x)φ(x)

π(x|y)φ(y)

–
p(y), (11)

hence finally we obtain

min [π(y|x)φ(x), π(x|y)φ(y)] = min [π(x|y)φ(y), π(y|x)φ(x)] , (12)

that, since the function min[·, ·] is symmetric, Eq. (9) is true !!! 2
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Other functions α(x, y)

Other possible α(x, y)

The acceptance function α(x, y) = min
h
1, π(x|y)φ(y)

π(y|x)φ(x)

i
, is not the only

possible choice to satisfy the balance condition.

Other possible functions α(x, y) : D ×D → [0, 1] are, for instance,

α(x, y) =
λ(x, y)

1 + π(y|x)φ(x)
π(x|y)φ(y)

(Hastings gen.; λ(x, y) = λ(y, x)).

With λ(x, y) = 1, we have

α(x, y) =
π(x|y)φ(y)

π(x|y)φ(y) + π(y|x)φ(x)
(Barker)
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Other functions α(x, y) (2)

and other examples

α(x, y) =
λ(x, y)

π(y|x)φ(x)
(Stein–1; λ(x, y) = λ(y, x))

α(x, y) =
φ(y)λ(x, y)

π(y|x)
(Stein–2; λ(x, y) = λ(y, x))

(13)

with λ(x, y) such that α(x, y) : D ×D → [0, 1].
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Other functions α(x, y) (3)

Moreover, given a function

r(x, y) ,
π(x|y)φ(y)

π(y|x)φ(x)
,

and a function F (z) such that

F (z) = zF (1/z),

it is possible to build other suitable acceptance functions in this way

α(x, y) , F ◦ r(x, y) = F (r(x, y)) . (14)

When F (z) = min[1, z] we obtain the standard acceptance function. With
F (z) = 1

1+ 1
z

= z
1+z

we obtain the Barker acceptance function.
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Other functions α(x, y) (4)

It is possible to show, for all α that generates a reversible MH kernel,

α(x, y) = α(y, x)r(x, y). (15)

For instance for the Hastings’ class, since α(x, y) = λ(x,y)

1+
π(y|x)φ(x)
π(x|y)φ(y)

= λ(x,y)
1+r(y,x)

,

λ(x, y) = λ(y, x) and r(x, y) = 1
r(y,x)

, then

α(y, x)r(x, y) =
λ(y, x)r(x, y)

1 + r(x, y)
=
λ(x, y) 1

r(y,x)

1 + 1
r(y,x)

=
λ(x, y)

1 + r(y, x)
= α(x, y).

(Peskun (1973), Tierney (1998)) The best α for the MH is

αMH (x, y) = min
h
1, π(x|y)φ(y)

π(y|x)φ(x)

i
. Indeed,

α(x, y) = α(y, x)r(x, y) ≤ min [1, r(x, y)] = αMH (x, y). (16)

(Basic idea) with the same proposal and target, with αMH we have: more
jumps, less correlation, less variance in the estimation.
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Practical problems

Computational troubles

How long is the“Burn in” period? when does the chain converge?

Another problem is to determine the total sample size or run length
required for accurate estimates.

There are several works about these issues [2, 3].

However, advanced MCMC samplers improve the estimation and reduce
the “burn-in” period.
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Important concepts

Important and general considerations

Speed up the convergence (reduce the “burn-in” period) =⇒ reduce the
correlation (The eigenvalue µ2 depends on the correlation function)

Improve the estimation =⇒ reduce the correlation
(better with independent samples)

There are different strategies to reduce the correlation =⇒ advanced MCMC
techniques.

However, the most important idea (in my opinion) is
to reduce the correlation =⇒ diminish the discrepancy in the shape between
proposal and target. Choose (or build) a good proposal.

We desire to stay as close as possible to the “independent samples” case.

We also desire to design black-box algorithms: the parameters of the MCMC
method are adaptively tuned, for different targets.
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Components in MH

how improve the MH ?

Components in MH that can be changed/improved:

proposal =⇒ specific and sophisticated choices, adaptive proposals (that change
with t)

α =⇒ different schemes, for instance, with multiple candidates (Multiple Try
Metropolis).

target =⇒ extended target in higher dim., data augmentation, auxiliary
variables etc..
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MCMC world

xt ∈ Rn

t ∈ N

Perfect sampling. 
``Coupling from the Past’’  

Adaptive Proposals: 
-  Partial  
-  Complete 
-  Regeneration-based 
We lose the ``Markovianity’’ (first 
order): It is difficult to prove the 
convergence of the chain.   

Reversible Jump 
MCMC (RJMCMC). 
       can change dim. xt

MCMC for:  
-  intractable likelihoods 
-  Approximate Bayesian 
Computation (ABC)  

We cannot use  
the detailed balance condition 

We can use the detailed balance condition 

Traditional 
Framework 

`` No (too) standard’’ 
framework 

MH method 
-  Hit and run 
-  Langevin  

Multiple candidates: 
-  Multiple try MH 
-  Delayed rejection MH  

Population – extended target –auxiliary 
variables –interacting/parallel chains: 
-  Slice sampler 
-  tempering 
-  Hamiltonian/hybrid MCMC  

Random Scan  
Gibbs 
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Multiple Try Metropolis (MTM) methods
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MTM algorithm

MH scheme.

x = xt

xt+1

π(y|x)

y

α(x, y) = min
�

π(x|y)φ(y)
π(y|x)φ(x)

�
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MTM algorithm

General MTM scheme, with generic weight functions and different proposals.

π1(y1|x)

y1 yNy2

π2(y2|x) πN (yN |x)

…. 

y = yk

ω1(y1, x)
ω2(y2, x)

ωN (yN , x)

x∗i ∼ πi(x∗i |y), i �= k, x∗k = x

x = xt

xt+1

Reference points 

α(x, y) = min
�

πk(x|y)φ(y)
πk(y|x)φ(x)

Wx

Wy

�
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MTM algorithm

1 Draw N samples y1, y2...., yN from yi ∼ πi (y |xt−1).

2 Calculate some (bounded and positive) weights ωi (yi , xt−1).

3 Choose a sample yk ∈ {y1, ..., yN} according to the ωi , and set

Wy =
ωk (yk , xt−1)PN
i=1 ωi (yi , xt−1)

.

4 Draw N − 1 reference samples x∗i ∼ πi (x |yk ),i 6= k, and set x∗k = xt−1.

5 Set

Wx =
ωk (xt−1, yk )PN
i=1 ωi (x∗i , yk )

.

6 Accept xt = yk with probability

α(xt−1, yk ) = min

»
1,

πk (xt−1|yk )φ(yk )

πk (yk |xt−1)φ(xt−1)

Wx

Wy

–
. (17)

otherwise, set xt = xt−1.
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MTM algorithm

You can find: the study of the state of art, the most relevant references, proofs,
possible choices of the weights, comparisons and further considerations in

L. Martino, J. Read, ”On the flexibility of the design of Multiple Try Metropolis
schemes”, (submitted to Computational Statistics), arXiv:1201.0646, 2012.
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MTM algorithm

MTM scheme with generic weights and different independent proposals

y1 yNy2 …. 

y = yk

ω1(y1, x)
ω2(y2, x)

ωN (yN , x)

π1(y1) π2(y2) πN (yN )

x = xt+1

α(x, y) = min
�
πk(x)φ(y)
πk(y)φ(x)

Wx

Wy

�

34 / 51



A brief journey through the MCMC world

Multiple Try schemes

MTM algorithm

The simplest MTM schemes: one independent proposal and importance weights

y1 yNy2 …. 

y = yk

x = xt+1

π(y)

α(x, y) = min

�
1,

ω(y) +
�N

i �=k ω(yi)

ω(x) +
�N

i �=k ω(yi)

�

ω(y1) =
φ(y1)
π(y1)

ω(y2) =
φ(y2)
π(y2)

ω(yN ) =
φ(yN )
π(yN )
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Multiple Try schemes

MTM algorithm

The simplest MTM schemes: one independent proposal and weights ∝ to the target

y1 yNy2 …. 

y = yk

x = xt+1

π(y)

ω(yN ) = φ(yN )
ω(y2) = φ(y2)

ω(y1) = φ(y1)

α(x, y) = min

�
1,

π(x)
π(y)

φ(y) +
�N

i �=k φ(yi)

φ(x) +
�N

i �=k φ(yi)

�
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Multiple Try schemes

MTM algorithm

(a)
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Standard MH (N = 1)
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MTM with N = 5
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Multiple Try schemes

MTM algorithm

Important feature

In a suitable MTM scheme (e.g., good choice weights, proposal “no too
ugly” etc.), the probability of accepting the new state approaches 1,
α→ 1, when the number of candidates grows, N → +∞.

In this case, α ≈ 1 it is a good news. The performance is not poor (is
excellent !!), since we are comparing several (with a huge N) candidates
that can be arbitrarily far or close to the current state, and then choosing
the best one.

Clearly, when N → +∞ we are increasing the computational cost.
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Approximate Bayesian Computation (ABC)
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Approximate Bayesian Computation

Approximate Bayesian Computation (ABC)

We desire to draw samples from the posterior pdf

φ(x) = p(x|y′) ∝ p(y′|x)p(x)| {z }
p(x,y)

, (18)

where y′ is a given vector of observations.

If we can evaluate both prior, p(x), and likelihood, p(y|x), we can apply
standard MCMC techniques (we does not need to know the normalization
constant, p(y′) - the evidence).

Assume that we can evaluate the prior p(x) (clearly) but we do not know
nothing about the analytic form of the likelihood (or it is extremely complicated
to evaluate the likelihood). Assuming also that we can just simulate from the
model, i.e., we can draw “observations”

y(i) ∼ p(y|x), i = 1, 2, 3.... (19)

How can we draw from φ(x) = p(x|y)? this is a very “hot” problem... this is
Approximate Bayesian Computation (ABC) problem.
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Approximate Bayesian Computation

ABC applications

Main applications

Molecular population genetic - evolutionary biology, where the likelihood
function is not available in a closed form. In this kind of application, for
instance, they can “draw samples (molecular variation) obtaining a discrete
variation of the data set. Inference and estimation for population parameters of
interest such as mutation rates, recombination rates, migration rates, and
demographic parameters are then based on a stochastic model (denoting the
“likelihood”).”

ABC techniques could be also used to find maximum likelihood, without
assuming a specific model (a likelihood), in applications where “artificial”,
”fictitious” observations can be generated (something like a “training” sequence
of observations/data....to give an idea).

Jorge Plata’s Example: y = f (x) + r, where r ∼ R1 + ...+ RN and each
Ri ∼ pi (r) is easy to draw from, but we do not know analytically the probability
of the sum.

41 / 51



A brief journey through the MCMC world

Approximate Bayesian Computation

ABC, considerations

The ABC problem

Clearly, one possible approach is a “two-steps” procedure (1) to draw several
samples y(i) ∼ p(y|x), for different x, and approximate the likelihood function
using these samples, obtaining p̂(y|x) ≈ p(y|x). (2) Then, we could use a

standard MCMC to draw from φ̂(x) = p̂(x|y′) ∝ p̂(y′|x)p(x).

Note that, in general we have y ∈ Rm and x ∈ Rn, we have to approximate a
function of m + n variables. It is complicated... however it is a possible strategy.

Another possibility is to design “ad-hoc” Monte Carlo methods to obtain
(“approximately”) samples from φ(x) directly while we draw samples y(i) from
the model, without dividing the procedure in two steps.
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Approximate Bayesian Computation

ABC, considerations

The ABC problem

Since the previous assumptions, we can easily draw samples from the joint pdf
(x(i), y(i)) ∼ p(x, y) = p(y|x)p(x), i = 1, ...,N. Indeed, we can first draw

x(i) ∼ p(x) and then y(i) ∼ p(y|x(i)).ˆ
Note that if (x(i), y(i)) ∼ p(x, y), x(i) ∼ p(x) and y(i) ∼ g(y), where g(y) =

R
p(x, y)dx is the other

marginal pdf.
˜

x ∈ X ⊆ R
y ∈ Y ⊆ Ry
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Clearly, if y ∈ Y ⊆ Rm (continuous variable), Prob{y(i) = y′} = 0. If y would be
a discrete variable we could easily use a rejection scheme....
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ABC - rejection

1 Draw x∗ ∼ p(x) (from the prior).

2 Draw y∗ ∼ p(y|x∗) (from the model).

3 Accept (x(i), y(i)) = (x∗, y∗) if ρ(y∗, y′) ≤ ε, with ε > 0 (for instance
ρ(y∗, y′) = |y∗ − y′|), and set i = i + 1. Otherwise, reject (x∗, y∗).

4 Repeat until obtaining the desired number of samples.

The generated samples are distributed as (x(i), y(i)) ∼ p(x|ρ(y∗, y′) ≤ ε), for this
reason it is Approximate Bayesian Computation. Clearly,

lim
ε→0

p(x|ρ(y∗, y′) ≤ ε) = p(x|y′),
„

lim
ε→+∞

p(x|ρ(y∗, y′) ≤ ε) = p(x)

«
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ABC - rejection

Drawbacks: the acceptance rate can be very low. For instance, it occurs when
there is significant discrepancy between the prior and likelihood.

The best Acceptance Rate: when the prior pdf is

p(x) = δ(x− x̂M ),

where
x̂M , arg max p(y′|x).

since, in this case, we have the highest probability to draw a sample y∗ (always
from p(y|x̂M )) close to the given observation y′.

However, (1) in general, we do not know x̂M , (2) we do not want to change the
prior (we also change the posterior!! in this case, p(x̂M |y) is a delta!!) and, (3)
even if we use this prior, the acceptance rate can be small (depending on the
variance of the pdf p(y|x̂M )).

Then, we try to overcome at least the first two points above (without varying
the prior).
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MCMC-ABC (Metropolis-Hastings ABC)

1 For t = 0, choose arbitrarily x0.

2 Draw x∗ ∼ π(xt |xt−1) (from a generic proposal) and y∗ ∼ p(y|x∗) (from the
model).

3 if ρ(y∗, y′) ≤ ε:
Accept the sample (movement) xt = x∗ with probability

α(xt−1, x
∗) = min

»
1,

π(xt−1|x∗)p(x∗)

π(x∗|xt−1)p(xt−1)

–
, (20)

otherwise, xt = xt−1 (with prob. 1− α).

4 if ρ(y∗, y′) > ε: xt = xt−1.

5 Set t = t + 1 and come back to step 2. [Also in this case, the invariant distribution is

p(x|ρ(y∗, y′) ≤ ε).]

Note that the prior pdf p(x) plays the role of the “target” in α(xt−1, x∗) !!! Indeed,

since x∗ is drawn from a generic proposal (not from the prior), we need a “mechanism”

to undo this effect and finally draw from the approximate true posterior pdf.
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MCMC-ABC: advantages and balance condition

Advantages: a suitable choice of the π(xt |xt−1) (or π(xt )) can increase the
acceptance rate in ρ(y∗, y′) ≤ ε. The proposal can have a less discrepancy with
the likelihood function (w.r.t. the prior).

The price to pay is that we obtained correlated samples.

Let me recall the detailed balance condition

K(xt |xt−1)φ(xt−1) = K(xt−1|xt )φ(xt ). (21)

(it is sufficient condition for φ(x) to be stationary/invariant w.r.t. the kernel
K(xt |xt−1))
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MH-ABC: proof (maybe partial)

Now we assume that the y is discrete variable (then we can use ε = 0).

Hence, the kernel (for the case xt 6= xt−1) of the method is the following (when
y takes values in a discrete space)

K(xt |xt−1) = π(xt |xt−1)| {z }
(1) propose;

p(y′|xt )| {z }
(2) accept (ε = 0);

α(xt−1, xt )| {z }
(3) accept, MH-α;

, when xt 6= xt−1.

Since our target is φ(x) = p(x|y′), we can write

K(xt |xt−1)p(xt−1|y′) = π(xt |xt−1)p(y′|xt )α(xt−1, xt ) ·
p(y′|xt−1)p(xt−1)

p(y′)
,

= π(xt |xt−1)p(y′|xt ) min

»
1,

π(xt−1|xt )p(xt )

π(xt |xt−1)p(xt−1)

–
·

p(y′|xt−1)p(xt−1)

p(y′)
,

=
p(y′|xt )p(y′|xt−1)

p(y′)
min [π(xt |xt−1)p(xt−1), π(xt−1|xt )p(xt )] .
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MH-ABC: proof (maybe partial)

We have obtained

K(xt |xt−1)p(xt−1|y′) =
p(y′|xt )p(y′|xt−1)

p(y′)
min [π(xt |xt−1)p(xt−1), π(xt−1|xt )p(xt )] ,

and note that replacing xt with xt−1 and xt−1 with xt , the expression remains
the same!! therefore we can write

K(xt |xt−1)p(xt−1|y′) = K(xt−1|xt )p(xt |y′),

that is the detailed balance condition!! :)

Hence p(xt−1|y′) is the stationary distribution w.r.t. kernel K(xt |xt−1) (when y
is a discrete variable, so that we can use ε = 0).
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Thank you very much!

Any questions?
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