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Abstract— In this paper we address the problem of indoor
tracking using received signal strength (RSS) as a position-
dependent data measurement. This type of measurements are
very appealing because they can be easily obtained with a
variety of wireless technologies which are relatively inexpensive.
The extraction of accurate location information from RSS in
indoor scenarios is not an easy task, though. Since RSS is
highly influenced by multipath propagation, it turns out very
hard to adequately model the correspondence between the
received power and the transmitter-to-receiver distance. The
measurement models proposed in the literature are site-specific
and require a great deal of information regarding the structure
of the building where the tracking will be performed and
therefore are not useful for a general application. For that reason
we propose the use of a compound model that combines several
sub-models, whose parameters are adjusted to specific and
different propagation environments. This methodology, called
Interacting Multiple Models (IMM), has been used in the past
for modeling the motion of maneuvering targets. Here, we
extend its application to handle also the uncertainty in the RSS
observations and we refer to the resulting state-space model
as a generalized IMM (GIMM) system. The flexibility of the
GIMM approach is attained at the expense of an increase in the
number of random processes that must be accurately tracked.
To overcome this difficulty, we introduce a Rao-Blackwellized
sequential Monte Carlo tracking algorithm that exhibits good
performance both with synthetic and experimental data.

I. INTRODUCTION

The problem of indoor navigation and tracking is cur-

rently receiving a great deal of attention because of its

many practical applications, that include security, guidance,

tourism and others. For this purpose, many types of position-

dependent data can be exploited [1], [2], including times of

arrival (ToA), time differences of arrival (TDoA), angles of

arrival (AoA) or received signal strength (RSS). Although

the latter is the most unstable type of range measurement

that can be obtained (due to phenomena such as scattering

or multipath propagation), the design of RSS-based location

and tracking schemes is very appealing because they can be

implemented using relatively inexpensive wireless network

infrastructures. The difficulty to elaborate precise models of

the RSS as a function of the distance between the transmitter

and the receiver in indoor scenarios, however, has not been

surmounted yet and, as a consequence, the design of RSS-

based tracking algorithms which are both accurate and robust

in practical environments remains an open problem [3].

In this paper, we propose a novel approach to indoor

tracking using RSS that relies on
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(a) the representation of both the mobile target dynamics

and the resulting RSS observations by means of multiple

interacting models and

(b) the sequential Monte Carlo (SMC) methodology [4] to

recursively compute Bayesian estimates of the target

position and velocity.

Interacting multiple-model (IMM) representations of the tar-

get dynamics have been used in the past to address the

problem of maneuvering target tracking [5]. Our contribution

in this work is to extend the notion of IMMs to handle

the uncertainty in both the dynamics and the RSS obser-

vations in a state-space random model. In particular, we

allow the representation of the target motion and the RSS

measurements to be drawn from a collection of candidate

models according to a multivariate-indicator random process.

We refer to the resulting state-space model as a generalized

IMM (GIMM) system. The advantage of this scheme is that

we can easily encompass a relatively broad range of indoor

scenarios. Its main drawback is the need to track the target

in a higher dimensional state space (its actual dimension

depending on the number of interacting models used). We will

show, however, that the SMC methodology, also known as

particle filtering, is powerful enough to numerically compute

accurate state estimates within this set up, in such a way

that the former virtue is fully exploited while the latter

limitation is overcome. We introduce a Rao-Blackwellized

particle filtering algorithm in which a subset of the state

variables is integrated out to improve the tracking accuracy.

The remaining of the paper is organized as follows. In

Section II we describe the state space model that represents

both the target dynamics and the associated indoor RSS

measurements. In Section III we introduce the proposed

particle filtering algorithm. Then, in Section IV we give

a full account of the experimental setup constructed for

the collection of real RSS data and show numerical results

that illustrate the performance of the method. The paper is

completed with some concluding remarks in Section V.

II. SYSTEM MODEL

A. Notation

Scalar magnitudes are denoted using regular face letters,

e.g., x, while matrices and vectors are written as bold-face

upper-case and lower-case letters, respectively, e.g., matrix X

and vector x. We will use letter p to denote the true probabil-

ity density function (pdf) of a random variable or vector. This

is an argument-wise notation, common in Bayesian analysis.

For two random variables x and y, p(x) is the true pdf of x and
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p(y) is the true pdf of y, possibly different. The conditional

pdf of x given y is written p(x|y). Exactly the same notation

is used for probability mass functions (pmf’s). Note that a

pmf can be formally handled in the same way as a pdf by

constructing it as a train of Dirac delta functions centered at

the points where the probability masses are located.

B. Motion Models

It is common to model the motion of a target by means

of a Markov stochastic process in discrete time [6]. Specifi-

cally, we formally represent the target dynamic state at time

t ∈ N over a two dimensional region as a 2× 1 complex

vector x2,t = [rt vt ]
T ∈ C

2, where the complex scalars rt

and vt provide the target position and velocity, respectively.

The subscript ℓ in xℓ,t is used to indicate the state vector

dimension. Such a notation will prove useful as we later in-

troduce extended versions of the state vector that incorporate

additional state variables. A popular, due to its simplicity,

dynamic model for x2,t is the so-called “constant velocity”

difference equation [6]
[

rt

vt

]

︸ ︷︷ ︸

x2,t

=

[
1 T

0 1

]

︸ ︷︷ ︸

A

[
rt−1

vt−1

]

︸ ︷︷ ︸

x2,t−1

+

[
T 2/2

T

]

︸ ︷︷ ︸

q

ut (1)

where A is a transition matrix that depends on the time-

discretization period T , xt−1 is the state vector in the previous

time step and ut is a complex Gaussian random variable with

zero mean and variance σ2
u , denoted ut ∼CN(ut ;0,σ2

u ). The

noise term qut is a 2×1 complex Gaussian vector, with zero

mean and covariance matrix σ2
u qq⊤, that represents the effect

of unknown accelerations.

While (1) yields a flexible model that enables the repre-

sentation of a broad range of target trajectories, it does not

exploit any specific features of the target motion that may

be known before hand. In particular, it is relatively simple to

extend (1) in order to capture the ability of the target to turn,

i.e., to change the angle of the velocity vt , that we denote as

∠vt . Let ωt ∈R denote the variation, in radians, of the angle

of the velocity at time t + 1. Then we can write the 3× 1

target state vector as x3,t = [ωt ,rt ,vt ]
⊤, which evolves with

time according to

ωt ∼ p(ωt |ωt−1)
[

rt

vt

]

=

[
1 T

0 exp(ιωt−1)

]

︸ ︷︷ ︸

A(ωt−1)

[
rt−1

vt−1

]

︸ ︷︷ ︸

x2,t−1

+qut , (2)

where ι =
√
−1, the transition matrix A(ωt−1) is a function

of the turning angle and the conditional pdf p(ωt |ωt−1)
is known. By selecting different distributions for ωt one

can devise different motion models. If the target may take

any turn at any time, independently of its previous state,

then p(ωt |ωt−1) = p(ωt) = U([0,2π)), where U(I) denotes

the uniform density in the interval I. For some vehicles,

the turning angle may be constrained to small angles, e.g.,

p(ωt |ωt−1) = p(ωt) = U([0,π/4]) or even restricted to dis-

crete values, p(ωt |ωt−1) = p(ωt) = U({±π/2}). It is also

possible to reduce the subset of turning angles as the velocity

increases. We also note that in the degenerate case in which

ωt = 0, with probability 1, for all t, then (2) reduces to (1).

Let us assume that, at a given time t, the target of interest

may move according to one out of L motion models, indexed

by the integers {1,2, . . . ,L}. Each motion model corresponds

to a different transition pdf for the Markov process {ωt}t∈N.

Therefore, in order to identify the specific densities, we

introduce an additional state variable, denoted at . This is a

discrete random indicator, at ∈ {1, . . . ,L}, such that at−1 = l

implies that ωt is generated according to the l-th model.

Thus, we need to write ωt ∼ p(ωt |ωt−1,at−1) to make this

dependence explicit. The conditional pmf p(at |at−1) is a part

of the overall model and, therefore, assumed known.

By incorporating the indicator at to the target state, we

obtain the 4× 1 vector x4,t = [at ,ωt ,rt ,vt ]
⊤ which evolves

according to the IMM equation

at ∼ p(at |at−1), ωt ∼ p(ωt |ωt−1,at−1)

x2,t = A(ωt−1)x2,t−1 +qut .
(3)

C. Measurement Models

We propose a scheme where RSS observations are col-

lected from J sensors. The measurement provided by the j-th

sensor at time t is denoted as y j,t . The relationship between

the observed RSS, y j,t , and the target position, rt , depends

on the physical environment (obstacles, building materials,

etc...) [3] and may change with time. In order to handle such

uncertainty, we again use an IMM approach to model the data.

Specifically, we allow the observation y j,t to be represented

using one out of K different models. This is written as

y j,t = fm j,t (rt)+ ε1,t , (4)

where m j,t ∈ {1, ...,K} is a random index with known pmf

p(m j,t) that identifies the measurement model at time t for

the j-th sensor, fm j,t is the function used to represent the

propagation conditions in the m j,t-th model, that determine

the received RSS, and εt ∼N(ε;0,σ2
ε ) is normally distributed,

zero-mean noise with variance σ2
ε (note the use of N for the

density of a real Gaussian variable versus CN for a complex

Gaussian). The form of each element in the collection of

functions { f1, f2, . . . , fK} should be determined from field

measurements collected in the scenarios where the tracking

system may have to operate (which can be significantly

different).

We write the measurement-model indicators together in

the J × 1 vector mt = [m1,t , . . . ,mJ,t ]
⊤, hence the full tar-

get state has J + 4 components, xJ+4,t = [mt ,at ,ωt ,rt ,vt ]
⊤.

The observations are put together in the J× 1 vector yt =
[y1,t , . . . ,yJ,t ]

⊤. The indices in mt are assumed independent,

but not necessarily identically distributed.

D. Summary

The generalized IMM (GIMM) state-space model that

comprises L possible interacting submodels in the state equa-

tion and K submodels in the observation equation is described
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by the set of relationships

mt ∼ p(mt), at ∼ p(at |at−1),

ωt ∼ p(ωt |ωt−1,at−1), x2,t = A(ωt−1)x2,t +qut ,

yt = f(rt ,mt)+ ε t , (5)

where f(rt ,mt) =
[

fm1,t (rt), fm2,t (rt), . . . , fmJ,t (rt)
]⊤

and ε t =

[ε1,t , . . . ,εJ,t ]
⊤, together with the prior pdf’s p(ω0), p(r0) and

p(v0) and the pmf p(a0). For the indoor tracking application,

of interest in this paper, the goal is to accurately estimate

the sequence of target positions, r0:t = {r0,r1, . . . ,rt}, as time

evolves. We tackle this problem using the SMC algorithm

introduced in the next section.

III. TRACKING ALGORITHM

A. Sequential Monte Carlo Approximation

From a Bayesian point of view, the smoothing pdf

p(r0:t ,ω0:t ,a0:t |y1:t) = ∑
m0:t

∫

v0:t

p(xJ+4,0:t |y1:t)dv0:t (6)

contains all relevant statistical information1 for the estimation

of r0:t . The elimination of v0:t and m0:t by marginaliza-

tion is often termed Rao-Blackwellization and reduces the

estimation variance [7], [8]. Unfortunately, the distribution

of Eq. (6) cannot be obtained analytically and we have

to resort to numerical approximation techniques. Our ap-

proach, in particular, is to build a point-mass approxima-

tion of p(r0:t ,ω0:t ,a0:t |y1:t) consisting of M random samples

in the space of {r0:t ,ω0:t ,a0:t}, denoted {r(i)
0:t ,ω

(i)
0:t ,a

(i)
0:t}M

i=1,

and associated importance weights, {w(i)
t }M

i=1. Each pair
{(

r
(i)
0:t ,ω

(i)
0:t ,a

(i)
0:t

)

,w
(i)
t

}

is called a particle and we can use

them to build the random measure

pM(r0:t ,ω0:t ,a0:t |y1:t) =
M

∑
i=1

δi(r0:t ,ω0:t ,a0:t)w
(i)
t , (7)

where δi is a delta measure located at
(

r
(i)
0:t ,ω

(i)
0:t ,a

(i)
0:t

)

and

the weights are assumed normalized, i.e., ∑M
i=1 w

(i)
t = 1.

If the approximation is properly constructed, meaning that

pM(r0:t ,ω0:t ,a0:t |y1:t)
M→∞→ p(r0:t ,ω0:t ,a0:t |y1:t) in some ade-

quate sense, then it is straightforward to use (7) in order to
approximate any estimators of r0:t or rt . In particular, since

pM(rt |y1:t) = ∑
a0:t

∫

ω0:t

∫

r0:t−1

pM(r0:t ,ω0:t ,a0:t |y1:t)dr0:t−1dω0:t

=
M

∑
i=1

δi(rt)w
(i)
t , (8)

where δi is the delta measure located at r
(i)
t , we readily

calculate the (approximate) minimum mean square error

(MMSE) estimate of rt as

r̂mmse
t =

∫

rt pM(rt |y1:t)drt =
M

∑
i=1

r
(i)
t w

(i)
t . (9)

1Since we are interested in tracking rt , the natural choice of our objective
pdf of interest should have been p(r0:t |y1:t). However, working with the latter
marginal density leads to an exponential growth (with t) in the complexity of
the SMC algorithm, unless some (not always well justified) approximations
are used.

The generation of samples and the computation of weights

is carried out by means of the importance sampling (IS)

principle [9]. Let π(r0:t ,ω0:t ,a0:t) denote a proposal pdf (often

called importance function in the IS terminology) such that

π(r0:t ,ω0:t ,a0:t) > 0 whenever p(r0:t ,ω0:t ,a0:t |y1:t) > 0. The

proposal density is used to generate samples,
(

r
(i)
0:t ,ω

(i)
0:t ,a

(i)
0:t

)

∼ π(r0:t ,ω0:t ,a0:t), i = 1, ...,M, (10)

and the associated weights are proportional to the ratio of the

objective pdf over the importance function,

w
(i)
t ∝

p(r
(i)
0:t ,ω

(i)
0:t ,a

(i)
0:t |y1:t)

π(r
(i)
0:t ,ω

(i)
0:t ,a

(i)
0:t)

, i = 1, ...,M. (11)

This procedure ensures the convergence of

pM(r0:t ,ω0:t ,a0:t |y1:t) towards p(r0:t ,ω0:t ,a0:t |y1:t), but

it has little practical use because Eq. (10) implies that M

complete sequences r
(i)
0:t , ω

(i)
0:t and a

(i)
0:t , i = 1, ...,M, must

be drawn from the proposal at each time step, hence the

computational complexity of the method grows with time.

Fortunately, the IS principle can be implemented se-

quentially, with a fixed complexity independent of time.

A straightforward application of Bayes’ theorem yields the

recursive decomposition

p(r0:t ,ω0:t ,a0:t |y1:t) ∝

p(yt |rt)p(rt |r0:t−1,ω0:t−1,a0:t−1)p(at |at−1)

×p(ωt |ωt−1,at−1)p(r0:t−1,ω0:t−1,a0:t−1|y1:t−1).(12)

Therefore, if we factorize the importance function as

π(r0:t ,ω0:t ,a0:t) ∝ π(rt ,ωt ,at)π(r0:t−1,ω0:t−1,a0:t−1), (13)

and substitute (12) and (13) into (11), then we obtain a

recursive expression for the importance weights,

w
(i)
t ∝

p(yt |rt)p(rt |r0:t−1,ω0:t−1,a0:t−1)

π(rt ,ωt ,at)

×p(ωt |ωt−1,at−1)p(at |at−1)w
(i)
t−1. (14)

Moreover, (13) means that, at time t, we can draw
(

r
(i)
t ,ω

(i)
t ,a

(i)
t

)

∼ π(rt ,ωt ,at), i = 1, ...,M, (15)

and append the new samples to the existing streams, r
(i)
0:t−1,

ω
(i)
0:t−1 and a

(i)
0:t−1 (which need not be modified), to build the

sequences r
(i)
0:t , ω

(i)
0:t and a

(i)
0:t . Eqs. (15) and (14) together yield

a sequential IS (SIS) type of algorithm for the construction

of pM(r0:t ,ω0:t ,a0:t |y1:t) [7].

It is well known, however, that the sequential application

of (15) and (14) with a finite number of particles, M < ∞,

quickly leads to a degenerate set of particles [7]. Indeed, the

variance of the weights increases stochastically with time and,

after a few time steps, one single particle tends to accumulate

all the weight and the approximation pM(r0:t ,ω0:t ,a0:t |y1:t)
becomes useless. This difficulty is commonly overcome by

adding a resampling step [7] which, intuitively, consists in

stochastically discarding the particles with low weights while

the particles with higher weights are replicated. Although
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several resampling schemes exist (and all of them can be

plugged into the tracking algorithm without any added dif-

ficulty), in this paper we adopt the conceptually simple

multinomial resampling method which can be interpreted as

drawing a new set of M samples from the approximation

pM(r0:t ,ω0:t ,a0:t |y1:t), i.e., we let
(

r̃
(i)
0:t , ω̃

(i)
0:t ã

(i)
0:t

)

=
(

r
(k)
0:t ,ω

(k)
0:t ,a

(k)
0:t

)

, with probability w
(k)
t ,

(16)

for each i = 1, ....,M and k∈{1, ...,M}. Then, the particles are

renamed,
(

r
(i)
0:t ,ω

(i)
0:t ,a

(i)
0:t

)

←
(

r̃
(i)
0:t , ω̃

(i)
0:t ã

(i)
0:t

)

, and the weights

are reset, w
(i)
t = 1

M
for all i (since we are drawing M

i.i.d. samples from our current best approximation of the

objective pdf). A resampling step can be taken every time

the approximate effective sample size [7] M̂e f f = 1

∑M
i=1 w

(i)2

t

falls below a user-defined threshold (M̂e f f ≤M, hence typical

threshold values are λM for some 0 < λ < 1).

B. Evaluation of The Weights

In order to ensure that the weights can be com-

puted, we must be able to evaluate the factors p(at |at−1),
p(ωt |ωt−1,at−1), p(rt |r0:t−1,a0:t−1) and p(yt |rt) in (14). The

transition densities p(at |at−1) and p(ωt |ωt−1,at−1) are part of

the model, hence known by assumption. The prior density of

the position at time t, p(rt |r0:t−1,a0:t−1,ω0:t−1), is Gaussian

and can be obtained in closed form for each particle. Indeed,

given r
(i)
0:t−1, a

(i)
0:t−1 and ω

(i)
0:t−1, the system

[
vt

rt

]

= A(ω
(i)
t−1)

[
vt−1

r
(i)
t−1

]

+qut (17)

is linear and Gaussian, with known parameters, and all poste-

rior pdf’s, including p(rt |r(i)
0:t−1,a

(i)
0:t−1,ω

(i)
0:t−1), are Gaussian

and can be computed exactly using a Kalman filter [8], [6].

In the sequel, we will denote p(rt |r(i)
0:t−1,a

(i)
0:t−1,ω

(i)
0:t−1) =

CN(rt ;r
(i)
t|t−1

,σ
(i)2

t|t−1
).

The pdf p(yt |rt) is usually referred to as the likelihood

of rt . If we write p(y j,t |rt) as a marginal of the joint

density p(y j,t ,m j,t |rt), then it is straightforward to obtain the

expression

p(yt |rt) =
J

∏
j=1

p(y j,t |rt) =
J

∏
k=1

∑
m j,t

p(y j,t |rt ,m j,t)p(m j,t),

where both p(y j,t |rt ,m j,t) = N(y j,t ; fm j,t (rt),σ
2
ε ) and p(m j,t)

are known from the model, for all j = 1, ...,J.

C. Importance Function

A good deal of the performance of the proposed algorithm

depends on the choice of the importance function. The

simplest choice is the prior

π(rt ,at ,ωt) = p(rt |r0:t−1,a0:t−1,ω0:t−1)p(at |at−1)p(ωt |ωt−1),
(18)

which reduces the importance weight calculation to w
(i)
t ∝

w
(i)
t−1 p(yt |r(i)

t ). More sophisticated importance functions can

lead to more efficient algorithms, though. For instance, if

1) Initialization, at t = 0:

• For i = 1, . . . ,M, draw a0, ω0 and r0 from the priors p(r0),

p(ω0) and p(a0), respectively. Set w
(i)
0 = 1

M
.

2) Recursive step, for t > 0:

• For i = 1, . . . ,M, draw a
(i)
t ∼ p(at |a(i)

t−1), ω
(i)
t ∼

p(ωt |ω(i)
t−1,a

(i)
t−1) and r

(i)
t ∼ p(rt |r(i)

0:t−1,ω
(i)
0:t−1,a

(i)
0:t−1).

• For i = 1, . . . ,M, update the weights, w
(i)
t ∝ w

(i)
t−1 p(yt |r(i)

t )

• Find the effective sample size M̂e f f = 1/∑M
k=1 w

(k)2

t . If

M̂e f f < λM then resample.

TABLE I

RAO-BLACKWELLIZED PARTICLE FILTER FOR THE GIMM SYSTEM.

at time t we compute estimates m̂
(i)
j,t (e.g., MAP or max-

imum likelihood estimates are relatively easy to obtain),

then we can linearize the observation functions fm̂ j,t and

analytically find a Gaussian approximation of the posterior

p(rt |yt ,r
(i)
0:t−1,a

(i)
t−1,ω

(i)
t−1)≈CN(rt ; r̃

(i)
t , σ̃ (i)2

), where the mean

r̃
(i)
t and variance σ̃ (i)2

can be obtained by taking the prediction

and update steps of an extended Kalman filter.

D. Summary

Table I shows a summary of the proposed Rao-

Blackwellized SMC tracking algorithm, with prior impor-

tance function, for the GIMM state-space model.

IV. SIMULATION AND EXPERIMENTAL RESULTS

A. Experimental setup and state-space models

We have carried out experiments in a network consisting

of six nodes located at fixed positions, acting as RSS sensors,

and one extra node acting as the moving target. The nodes are

ZigBee motes, each one consisting of a small circuit board

with its own processor and a transmission system based on

the IEEE 802.15.4 standard and upper layers defined by the

ZigBee Alliance. Two type of motes have been used, includ-

ing Crossbow and a combination of Arduino microprocessors

with Xbee chipsets. The RSS for any transmission between

motes is easily extracted from any of the two nodes. The

network consisted of six motes deployed in an area of 6×10

meters, in the positions (0,0), (6,0), (0,5), (6,5), (0,10) and

(6,10) meters.

In order to select the observation functions fk(rt), k =
1, . . . ,K, for this scenario we collected a large number (≈
150,000) of RSS measurements associated to 28 different

distances, d1, ...,d28, between a minimum of d1 = 0 m and a

maximum of d28 = 12 m. From these data, we constructed a

histogram for each different distance. As an example, Fig. 1

shows the results for d1 = 0, d2 = 1, d3 = 2 and d6 = 3. Each

histogram shows the range (x-axis) and frequency (y-axis)

of the RSS measurements (in dB) collected by the sensors,

grouped in bins of 1 dB. It is apparent that the histograms are

not unimodal. Therefore, a multimodal representation of the

observations, such as the one in the proposed GIMM model,

is necessary indeed.

The simplest possible GIMM model is obtained when

taking L = 1 and K = 2. The reason to use a single dynamic
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Fig. 1. Histograms displaying the absolute frequency of the RSS obser-
vations versus their range (in dB). The histograms are related to distances
(from left to right and top to bottom) d1 = 0, d2 = 1, d3 = 2 and d6 = 3 m.

model in this example2 is that classical IMM schemes, where

L > 1 motion models are applied, have been reported to work

properly in the general maneuvering target tracking literature

and, more specifically, using particle filters [5]. Therefore, the

relevant goal is to assess the ability of the Rao-Blackwellized

particle filter to switch between measurement models. In

order to construct the K = 2 models, we have:

1) Used the k-means algorithm to separate the obser-

vations, for each distance di, i = 1, ...,28, into two

clusters. This is straightforward for some distances,

but it is apparent that the data exhibit more than two

modes for several values of i. Let Si,1 and Si,2 be the

observation clusters for distance di and models 1 and

2, respectively.

2) Computed the sample mean for each cluster and each

distance, denoted µi,1 and µi,2 for distance di and mod-

els 1 and 2, respectively. Similarly, we have obtained

sample variances σ2
i,1 and σ2

i,2.

3) Fitted two polynomials of degree 6, g1(d) = ∑6
i=0 α1,id

i

and g2(d) = ∑6
i=0 α2,id

i, to the experimentally ob-

tained sequences of sample means µ1,1, ...,µ28,1 and

µ1,2, ...,µ28,2, respectively, for models 1 and 2. Sim-

ilarly, we have fitted degree 6 polynomials, h1(d) =

∑6
i=0 β1,id

i and h2(d) = ∑6
i=0 β2,id

i, for the sample vari-

ances, σ2
1,1, ...,σ

2
28,1 and σ2

1,2, ...,σ
2
28,2. The polynomial

coefficients, {αk,l}6
l=0 and {βk,l}6

l=0, with k = 1,2, have

been selected by a least squares procedure.

With these elements, a preliminary choice of the observation

function for the k-th model and the j-th sensor is fk(rt) =
gk(d j,t), where dt = |rt − s j| is the distance between the

target position, rt , and the j-th sensor location, s j, while the

observation noise is Gaussian with zero mean and variance

hk(d j,t). The polynomials g1(d) and g2(d), together with the

points from which they are fitted, are shown in Fig. 2 left

and right, respectively. The polynomials h1(d) and h2(d) are

shown in Fig. 3 left and right, respectively.

2We have used the simplest possible model, given by Eq. (1), even if this
is clearly not the best representation of the kind of motion considered in
the experiment. We believe that a careful choice of the dynamic model will
further improve the performance of the tracker.
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Fig. 2. Polynomials g1(d) (left) and g2(d) (right) describing the fitted mean
of the RSS measurements versus distance. The points show the experimental
data used for fitting the functions.
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Fig. 3. Polynomials h1(d) (left) and h2(d) (right) describing the fitted
variance of the RSS measurements versus distance. The points show the
experimental data used for fitting the functions.

Unfortunately, the experimental data show that the RSS

observations become highly unreliable when the distance

between the target and the sensor is large (see the large

fluctuations of the data points, for d > 3, in Figs. 2 and 3).

Therefore, the straightforward choice of the likelihood,

p(y j,t |rt ,m j,t) = N
(
y j,t ;gm j,t (d j,t),hm j,t (d j,t)

)
, (19)

turns out of little use. Better results are obtained if we
relate the RSS observations to distances, using (19), when
the received power is large enough, but assign a distance-
independent likelihood value otherwise. Specifically, we de-
fine the likelihood function

p(y j,t |rt ,m j,t)
△
= N

(
y j,t ;gm j,t (d j,t),hm j,t (d j,t)

)
(1−Φm j,t (γm j,t ))

+N(y j,t ; µ̂m j,t , σ̂
2
m j,t

)Φm j,t (γm j,t ), (20)

where Φm j,t (γ) =
∫ γ
−∞ N

(
y;gm j,t (d j,t),hm j,t (d j,t)

)
dy. The RSS

thresholds are set to γ1 =−46 dB and γ2 =−60 dB and the

distance-independent mean and variance parameters for the

two models, µ̂k and σ̂2
k , for k = 1,2, respectively, are also

fitted to the experimental data.

B. Computer Simulation Results

In order to illustrate the performance of the proposed

method in a controlled scenario, we have selected two regular

trajectories for the target and generated synthetic observations

by drawing them from (20). Then, we have applied the Rao-

Blackwellized particle filter (RBPF) to track the target. The

complete set of simulation and algorithm parameters is listed

in Table IV-B.

Figure 4 shows the reference trajectories (solid black lines),

the estimates provided by the RBPF in a single simulation run

(solid red lines) and the location of the sensors (blue points).

When averaged over 100 simulations, the mean absolute

error (MAE) in the estimation of the target position for

the trajectory in Figure 4-left is MAE = 1.5623 m, with

a standard deviation of 1.372 m. The corresponding MAE
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Parameter Value

Total no. of particles, M 2000

Resampling threshold, λ 0.2

Total no. of sensors, J 6

Total simulation time, trajectory 1, T1 52.2 s

Total simulation time, trajectory 2, T2 50.2 s

Sampling period, Ts 0.2 s

Threshold for model 1, γ1 -46 dB

Threshold for model 2 γ2 -60 dB

State Equation noise variance, σ2
u 0.7

Probability for model 1, p(mi,t = 1) 0.5

Probability for model 2, p(mi,t = 2) 0.5

TABLE II

PARAMENTERS OF SIMULATION

and standard deviation for the trajectory in Figure 4-right are

1.7347 m and 1.373 m, respectively. We have also simulated

a random trajectory with a duration of 5 minutes in the

described area of 6×10. For this simulation we used a mesh

of 12 sensors holding up the positions (0,0), (3,0), (6,0),
(0,3), (3,3), (6,3), (0,6), (3,6), (6,6), (0,9), (3,9) and (6,9)
meters. The averaged MAE over 100 simulations was 0.4531

m and the standard deviation was 0.7314 m.
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Fig. 4. Results of target tracking with two reference trajectories and
synthetic observations generated according to Eq. (20). The true trajectories
are plotted in solid black lines, the estimates in solid red lines and the sensors
are shown by blue points.

C. Experimental results

Since our main goal is the experimental verification of

the validity of the GIMM scheme and the RBPF, we have

also applied the same tracking algorithm (with exactly the

same parameters) to the estimation of the same two reference

trajectories using experimentally collected data. The measure-

ments were obtained with the same setup described in Section

IV-A, but independently from the observations used to fit the

model.

Figure 5 shows the obtained results. They are satisfactory,

in the sense that the error is similar to the one achieved when

the observations are synthetic.

V. CONCLUSIONS

We have proposed a generalized interacting multiple-model

(GIMM) approach to the representation of the target dynam-

ics and the radio signal-strength (RSS) observations in an

indoor scenario. The resulting class of state-space models is

very flexible and we claim it may enable the adequate formal

representation of time-varying scenarios with highly unstable

RSS measurements. The drawback of the GIMM system is

the increase in the dimension of the system state that must

be tracked. To handle this difficulty, we have introduced a
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Fig. 5. Results of target tracking with two reference trajectories and
experimental observations. The true trajectories are plotted in solid black
lines, the estimates in solid red lines and the sensors are shown by blue
points.

Rao-Blackwellized particle filter that jointly estimates the

target trajectory and the additional state variables needed to

represent the interacting models. We have provided numerical

results that illustrate the performance of the proposed method

with both synthetic and experimental RSS measurements.
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