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» Preambule - or a very long introduction
from a signal processing point of view...

» Bayesian Inference
» Computational methods for Bayesian Inference

» Monte Carlo sampling methods - brief overview
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BASIC, STANDARD PROBLEM

» In many applications, we are interested in inferring a variable

of interest,
0 =[61,..,04,] € ©® CR%,

given a set of observations y € RY .

» We want to know 6 given y:

0=y
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STANDARD - TYPICAL APPROACH

» Minimizing a cost function:
C(0) = Loss(8.y),
obtaining

6 = arg mgn C(0).
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CLASSICAL APPROACH + REGULARIZATION

REGULARIZATION:
» fighting against overfitting,

» avoiding numerical problems and increasing the
numerical stability.
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CLASSICAL APPROACH + REGULARIZATION

Cost function:
C(0) = Loss(0,y) + Reg(0)
Again, we minimize it (optimization).
» Why pass to a probabilistic domain /approach?

» from optimization ==> to sampling, why?
» a first answer in the next two slides.
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Example: nonlinear model for regression

Regression problem: Assume that we have N data {x;, y;}.
We consider M bases

Bm(x) ' RP — R, m=1,.. M.

> We want that the solution has the following mathematical
form:

M
F) =D Omdm(x).
m=1
» We want to find the 6,,'s, we will consider

M < N.
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Our nonlinear model

Assuming that we have N data {x;, y;},

M
Yi = Z Omodm(x;) + error...
m=1
with
M < N.

Can we still associate a linear system?
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Example: our observation model

the model is non-linear...but...

it is still linear...

with respect to the coefficients 6y, 6, ..., 0y, —
YES is still linear ! for this reason, it can be

analytically solved

Then, we can construct some matrices and vectors...
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EXAMPLE: RECTANGULAR LINEAR SYSTEM (M < N)

We can define:

0 = [81,92, ...,9/\/]]T, M x1

[91(x) 2(x1) ... dm(x1)]
P1(x2) Pax) ... dm(x) N 5 M

| O10xv) P2(xw) - dm(xw)

Yy =Dy, o], NxL
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Example: rectangular linear system

The system can be written as:
PO =y.
Check the dimensions

[N x M] x[Mx1]=N x 1.

11/92



Example: rectangular linear system

Since the system is rectangular, we cannot write
0=3o1ly, NOOOO!

the inverse matrix ! does not exist | since ® is
rectangular !
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EXAMPLE

Cost function of the Regularized Least Squares:
C(0) =|ly — @6]]* + A||0]*.

we want to minimize C(@) with respect to 6.
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EXAMPLE

Solution:
=61, ....00] = (@ @+ Ay) @y, (1)

Recall that solution has the following mathematical
form:

¢m(x)

Mz

m:
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PROBABILISTIC APPROACH

(a) Differ among different cost functions, (b) different
possible “points” for summarizing the cost function, (c)
compute areas (e.g., for credible intervals) ...
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PROBABILISTIC APPROACH

in the “probabilistic” approach: the MAP estimator, the
MMSE estimator (mean - expected value), the median
estimator are well-defined, and also the “areas” have a
“meaning” and can be computed...
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Probabilistic version...

Cost function:

C(@) = Loss(6,y) + Reg(0)

neg. log-likelihood neg. log-prior

likelihood = p(y|@) x exp (—Loss(0,y)),

prior = p(@) o exp (—Reg(0)).

17/92



Bayesian ‘“slang”

Cost function:

C(@) = Loss(0,y) + Reg(0)
~—— N——
neg. log-likelihood neg. log-prior

Bayesian Inference:

posterior o< exp{—C(0)} = likelihood X prior
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Bayesian Inference

Bayesian Inference:
posterior < likelihood X prior.
where

posterior = p(0ly),

likelihood = p(y|@) o exp (—Loss(8,y)),
prior = p(0) x exp (—Reg(0)) .
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Prior versus Regularization

prior = p(@) o exp (—Reg(0)).
Main difference: the prior density must/should be
normalized (“normalizable™)... (in some case, this
condition can be also relaxed)
Normalization ==> since it represents probabilities ==> now we have
more interpretability of different situations (think on different

regularizations - e.g., previous figures - and different priors ...)
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» Preambule - or a very long introduction
from a signal processing point of view...

» Bayesian Inference
» Computational methods for Bayesian Inference

» Monte Carlo sampling methods - brief overview
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Bayesian Inference:

1. “Main Actors” in Bayesian inference
2. Important considerations and consistency
3. Goals

4.
5
6

Levels of inference

. Type of Priors - choice of the priors

. Reasons to be Bayesian
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PROBLEM STATEMENT AND MAIN ACTORS

» In many applications, we are interested in inferring a variable
of interest,
0 =[01,...,04,] € ® CR¥,

given a set of observations y € R
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PROBLEM STATEMENT AND MAIN ACTORS

» The posterior probability density function (pdf) is

7(6) = ploly) = VL)

x £(y|0)g(0), (2)
where
» ((y|@) = p(y|0) is the likelihood function (induced by
the observation model);

» g(0) = p(0) is the prior pdf,

» Z = p(y): marginal likelihood/Bayesian evidence.
(note that we have 2 conditionals p(@|y), £(y|@), and 2 marginals, g(8) and
p(y) - with the prior and the likelihood, we create a joint pdf of 8,y )
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MARGINAL LIKELIHOOD - BAYESIAN EVIDENCE

» Given y, the marginal likelihood - Bayesian model evidence is
an integral (a normalizing constant):

Z=ply) = /@ ((y|6)(8)d6.

is fixed and, in general, is unknown.
> Z = Weighted average of the likelihood values !!
» Note that

0 < minp(y|6) < Z < maxp(y|6) = p(y|Oin)-

» Z = p(y) useful for model selection purposes.
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EXAMPLES OF “MODEL SELECTION”

Model selection: (some examples)

>

|
>

Tuning of the parameters of the observation model (i.e., of
the likelihood).

Tuning of the parameters of prior.

Choose the best observation/measurement model
among a set of possible models.

Select the order/complexity in a model (for instance, the order
of a polynomial in a regression, or the order of an AR - FIR -
filter etc. )

Variable selection.

etc.
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EXAMPLES OF “MODEL SELECTION”

Model selection: - The previous examples can divided in two
main scenarios:

» Basic model selection
» Nested models

This classification is important for the possible choice of the priors.

- F. Llorente, L. Martino, E. Cuberlo, J. Lopez-Santiago, D. Delgado, " On the safe

use of prior densities for Bayesian model selection”, viXra:2110.0032 , 2021.
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UNNORMALIZED POSTERIOR

» Since Z is generally unknown: then, in many cases, we are
only able to evaluate the unnormalized pdf

m(0) = ((y|0)g(0) o 7(6).

Note that

> Note that
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BREAK TO EXPLAIN: “EVALUATION VERSUS
SAMPLING”

“Evaluation versus Sampling of a density” in this slides
» Evaluation: evaluate point-wise a function/density.

» Sampling: GENERATE RANDOM NUMBERS according to a
density.
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TYPICAL EXAMPLE OF APPLICATION: BAYESIAN
INVERSION

» Observation model - inducing likelihood:
y =G(0) +v,

where G(0) is a “physical” model (for instance) and v is an
independent Gaussian noise (for instance).

» Likelihood:

p(y16) = £(y|6) x exp (—'V‘G(‘””)

2
204

> the “goal” is: virtually, @ = G~1(y). For this reason, it is
called “inversion” ....
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Bayesian Inference:

1. “Main Actors” in Bayesian inference

2. Important considerations and consistency
3. Goals

4.
5
6

Levels of inference

. Type of Priors - choice of the priors

. Reasons to be Bayesian
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MAIN DIFFERENCES WITH FREQUENTIST APPROACH

» The vector of data y is given and fixed.

v

0 "should” be considered random, since we assume 6 ~ g(0).

» But “practical Bayesians” and/or “Bayesians with common
sense”, considers/knows that it exists a (fixed) O¢yrye, that we
desire to infer.

» In fact, under mild conditions, the Bayesian estimators are
consistent as the number of data grows.

P (note that bias, variance and MSE of an estimator are more frequentist
ideas/quantities since consider expectation over y... we can extend these
concepts here, considering different posteriors - one for each y’ generated

according to the model- and then make an average... )

32/92



CONSISTENCY

» Under mild conditions, the Bayesian estimators are
consistent as the number of data grows.

» Consistency: As the number of data grows, the posterior
becomes more tighter and tighter around Oy ye.
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Bayesian Inference:

1. “Main Actors” in Bayesian inference

2. Important considerations and consistency
3. Goals

4.
5
6

Levels of inference

. Type of Priors - choice of the priors

. Reasons to be Bayesian
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MAIN GOAL

> Goal: extract and summarize the statistical information
contained in the posterior pdf 7(0) and compute Z.
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(GOAL - QUADRATURE PROBLEMS

» More specifically, in many cases, our goal is to compute
efficiently some integral involving ,

1
| = Z/@f(e)w(e)de, (3)

where f(8) : ® — R", and
Z= / 7(0)de.
()

In most of the cases, Z is also unknown and we have to
estimate it (useful for model selection purposes).
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(GOAL - QUADRATURE PROBLEMS - MOMENTS

> Example: If f(6) = 6, the integral | = [ 07(0)d6
represents the MMSE estimator - the reason of this name
required more hours of course...

» More generally, all the moments of the posterior are:

|k:/ 0¥7(6)de,
(C)

k=1,23...
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MODEL SELECTION - MARGINAL LIKELIHOOD -
AGAIN QUADRATURE PROBLEM

» Marginal likelihood - Bayesian model evidence:

Z=ply) = [ 7(6)d6 = [ £(si6)e(6)db.
) e
» 7 = Weighted average of the likelihood values !!

» Note that

0 < min p(y|8) < Z < max p(y|68) = p(y|Ou.).
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GOAL

» Goal: extract and summarize the statistical information
contained in the posterior pdf 7(8) and compute Z.

» The problem of extracting information from 7(0) is
mainly converted in a quadrature problem.
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Bayesian Inference:

1. “Main Actors” in Bayesian inference

2. Important considerations and consistency
3. Goals

4.
5
6

Levels of inference

. Type of Priors - choice of the priors

. Reasons to be Bayesian
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LEVELS OF INFERENCE

In the standard/basic framework (g(0), ¢(y|@), Z) :
» Level 1: Inference about 6.
» Level 2: Learning/obtaining Z.

different levels ==> different “rules”, in this sense different
priors can be used or have different meanings...
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MORE LEVELS: HIERARCHICAL MODELING

Hierarchical modeling: h(v) prior over v, g(6|v) prior over
0

» Level 0: Inference about v.
» Level 1: Inference about 6.

» Level 2: Learning/obtaining Z; in this case we have also
several Z|v.
We can use Level 2 for learning v or use a full-Bayesian
solution. See Section of:
- F. Llorente, L. Martino, E. Cuberlo, J. Lopez-Santiago, D. Delgado, " On the safe

use of prior densities for Bayesian model selection”, viXra:2110.0032 , 2021.
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Bayesian Inference:

1. “Main Actors” in Bayesian inference

2. Important considerations and consistency
3. Goals

4.
5
6

Levels of inference

. Type of Priors - choice of the priors

. Reasons to be Bayesian
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TYPE OF PRIORS !

» There are several type of priors. See as an example
Section 3.3:

- F. Llorente, L. Martino, E. Cuberlo, J. Lopez-Santiago, D. Delgado, " On the safe

use of prior densities for Bayesian model selection”, viXra:2110.0032 , 2021.
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PRIORS FOR MODEL SELECTION

» Marginal likelihood - Bayesian model evidence:

Z=ply) = [ w(6)d0 = | ttylo)e(6)do.
e e
» Issues when the prior is improper...

- F. Llorente, L. Martino, E. Cuberlo, J. Lopez-Santiago, D. Delgado, " On the
safe use of prior densities for Bayesian model selection”, viXra:2110.0032 , 2021.

- F. Llorente, L. Martino, D. Delgado, J. Lopez-Santiago, " Marginal likelihood

computation for model selection and hypothesis testing: an extensive review”,

(to appear) SIAM Review, 2022. arXiv:2005.08334
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Bayesian Inference:

1. “Main Actors” in Bayesian inference

2. Important considerations and consistency
3. Goals

4.
5
6

Levels of inference

. Type of Priors - choice of the priors
. Reasons to be Bayesian

46 /92



REASONS TO USE A BAYESIAN APPROACH

» include prior information in our model

» different possible point estimators (not only maximum...)
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REASONS TO USE A BAYESIAN APPROACH

» Provide complete posterior information:

including information by the prior density
quantify uncertainties (histograms)

credible intervals (areas)

quantiles (areas)

number of modes and modes

correlations among parameters (components of )
(multi-dimensional histograms)
dependence/sensibility analysis of the model with
respect to the components of 8 (related to the
gradient/derivatives of the model/transformation and
the variance of the histograms - marginal densities)

VVVYVYYVYY

\4
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REASONS TO USE A BAYESIAN APPROACH

» easier application and interpretation of statistical
quantities and procedures: credible intervals (easier
than confidence intervals), hypothesis testing, model
selection etc... in my opinion, this is the main benefit with
respect to the frequentist approach.

» regularization - numerical stability (due to the prior)

» model selection (marginal likelihood - Z)
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EXAMPLES OF 6

Inference about 6:
» 6O can be a vector of parameters of a model
» 0 can be a vector of hyper-parameters
» 6 can be a model index (model selection),
>

0 can include the number of parameters in a model
(complexity of the model)

» More specifically, @ can represent the position or the
trayectory of a target, the volatility in a financial time series,
velocity and direction of the wind etc.
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» Preambule - or a very long introduction
from a signal processing point of view...

» Bayesian Inference

» Computational methods for Bayesian
Inference

» Monte Carlo sampling methods - brief overview
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COMPUTATIONAL METHODS FOR BAYESIAN
INFERENCE

» In many applications, we are not able to compute
analytically | and Z.
» Numerical approximations:

1.

2.
3.

=~

Deterministic quadrature rules - Gaussian-Hermite,
Cubature rules...

Monte Carlo techniques

Variance Reduction - Quasi Monte Carlo (negative
correlation)

Variational inference techniques

. other modern quadrature rules
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COMPUTATIONAL METHODS FOR BAYESIAN
INFERENCE (2)

» The methods 1-2-3 of the previous list can
considered quadrature techniques.
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COMPUTATIONAL METHODS FOR BAYESIAN
INFERENCE (2)

» The methods 1-2-3 of the previous list can be summarized
with this formula:

1 XM
1= /@ £(6)7(6)d0 ~ Ty — Z_:l WE0,),  (4)
» Error bounds:
1= 1]| < V(F)Dn(61.), (5)

- V/(f) depends on variation of f in ©
- Dn(61:n) depends on choice of the nodes/samples 1.y

» Clearly, Dy(61.ny) — 0 when N — oo
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> Preambule - or a very long introduction
from a signal processing point of view...

» Bayesian Inference
» Computational methods for Bayesian Inference

» Monte Carlo sampling methods - brief
overview
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MONTE CARLO SAMPLING METHODS

» They are random number generators ==> from a
generic density - given an available random source

» that can be used for building/designing stochastic
quadrature rules in Bayesian inference.

Important: Monte Carlo sampling methods are random
number generators, they have life out of the “Bayesian
world..." - but the main application is in Bayesian inference.
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MORE THAN A QUADRATURE RULE AND AN
OPTIMIZER...

with Monte Carlo:

» We can also optimize 7(0) (or 7(8) is the same): global
optimization, the “true” optimization !!

» But with optimization we just get one point - as | said before,
we want to extract and summarize the statistical information
contained in 7(80).

SAMPLING >> OPTIMIZATION

» With a Monte Carlo sampling method, we have also an
“optimizer”.

» Optimization can be used for obtaining better “samplers”.
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APPROXIMATION OF THE “MEASURE OF THE
POSTERIOR”

» \We obtain a particle approximation (with N
samples)

7(0) =>_ wo(6—06).
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STANDARD MONTE CARLO APPROXIMATION

» If we can generate N i.i.d. random vectors 8,
distributed according to 7(@), n=1,..., N,
then

N
AN 1 _
=7 n§_1j f0,)~ I, 6,~7(8).

» However:

» Often it is not possible to draw from 7(8).
> Even in this "ideal” case, it is not straightforward to
approximate Z, i.e., to find Z = Z.
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SAMPLING METHODS

If it is not possible to draw directly from the target pdf 7(0):

» One can draw samples from a simpler proposal pdf, ¢(0), and then filter
properly these samples for obtaining an approximation of | and Z.

Sampling algorithm: all the steps corresponding to this “filtering operations”.

Z1, . Zpr ~ q(6 M
! M q(—)> MC sampling ——7(0) = Z Wnd(0 — 2,

m=1

M > N = effective number of samples

W, x {0,1} * accept/reject

M
Z Wy, =1 [C"2) = by repetition * MCMC

m=1
W, = generic * importance

! * standard MC

’LUm:M
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SAMPLING METHODS: CLASSIFICATION

(STATIC SCENARIO)
4 main classes of algorithms:

1. Direct methods (based on random variable transformation).
> Independent samples. (the best, almost)
> computational effort: lowest.
> applicability: low.
2. Rejection sampling.
> Independent samples. (the best, almost)

> computational effort: higher (depending on the acceptance rate).
> applicability: wider of direct methods, but in general low.

3. Importance sampling (IS).
> Weighted samples.
P> computational effort: low.
» applicability: always. - Easy approx of Z
4. Markov chain Monte Carlo (MCMC).
>  (positive) Correlated samples.
P> computational effort: low.
> applicability: always. - Exploration of the space

(the best scenario is: negative correlated samples =>, e.g., including deterministic
“parts” within the method)
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SAMPLING VS VARIATIONAL/OTHERS APPROACHES

Benefits:

» Applicability - flexible (easy to apply to different
problems/framework) - the unique requirement is to be
able to evaluate 7(6) o 7(8); this condition can even
relax.

» Complete approximation of the posterior that can be
improved increasing the computational cost.
Drawbacks:

» “Slower" - more computational demanding (depending on
the specific requirements of the considered application).
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SPEED UP - MONTE CARLO

To speed up:

» given the application, specific algorithm design:
- better proposal choice
- include more information of the posterior (e.g., gradient)
- include determinism (when it is possible, in a proper

way)
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PERFORMANCE OF A SAMPLING METHOD

Black-box point of view:
» The performance strictly depends on the choice
of q(8).
» We desire g(0) ~ 7(0).
This is the reason for employing adaptive
techniques.

» | worked (a lot) with adaptive MCMC and
adaptive IS.
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STATIC - DYNAMIC PARAMETERS

0 = |x, A
/

Dynamic static

(a factorization of the posterior is available)

X = [X]_7 ...,de] € Rdx,
A=[M, . Mgy ] €RD
dy = dy + d.
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DIFFERENT FRAMEWORKS - APPLICATIONS
TABLE: Scenarios where we able to evaluate 7(6]y).

[ Computational Scenarios [ Monte Carlo approach
w(Aly) static-batch scenario
(ALY, A2.qy, = fixed), static-batch scenario with Gibbs approach,
m(A2ly, A1 = fixed, A3.q, = fixed), component-wise approach

TI'()\3|y, )\1;2 = fixed, )‘4:dA = fixed),...

T(Aly1), m(Aly1, y2), m(Alyre)-.. data tempering or online inference
T(AlyLay =) (data streaming)
m(Aly1, y2,¥3),m(Alya), 7(Alys, y6)--. parallel - distributed - diffused estimation
Big Data
w(x1]y). m(x1, x2|y), w(x1x2, x3]y)... the dimension of x's increases progressively
(classifier and regressor chains)
w(x1)y1),7(x1, x2|y1, y2), w(x1:3|y1:3)-.. completely sequential scenario - HMM
T(X1:dy = X|Y1:dy =Y)- Kalman Filters; Particle Filters
state space models
w(x1, Aly1),m(x1,2, Aly1,2), 7w(x1:3, Aly1:3)... | “Tracking and parameter estimation
T(X1:dy = X AlYLdy =) in state-space models”
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DIFFERENT FRAMEWORKS - APPLICATIONS

TABLE: More “strange” scenarios; e.g., we cannot evaluate 7(0]y).

[ Computational Scenarios

[ Monte Carlo approach

Zx(0) = [ ¢(y|0)dy unknown

methods for “double intractable” posteriors
pseudo-marginal MCMC

costly likelihood, or
impossible to evaluate the likelihood, or
“too much” data

Approximate Bayesian Computation (ABC),
pseudo-marginal MCMC, noisy MC
Monte Carlo for Big Data

unknown dimension dy
of 0 = [917 cey ede]

“tracking with unknown number of targets”,
“change point detection”,

inference also about dy,

Reversible Jump MCMC, Particle learning

model selection

inference 4+ choose the best model
(related to the previous point)
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» Markov Chain Monte Carlo (MCMC)

- L. Martino, V. Elvira. "Metropolis Sampling”, Wiley StatsRef: Statistics Reference
Online, 2017. arXiv:1704.04629

- L. Martino, " A Review of Multiple Try MCMC algorithms for Signal Processing”,
Digital Signal Processing, Volume 75, Pages: 134-152, 2018.
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MARKOV CHAIN MONTE CARLO (MCMC)

» Markov Chain Monte Carlo (MCMC) techniques yield an
ergodic Markov chain

6, —>60,— .0, — ..07r_1—0T,

with a stationary/invariant density, that is exactly the
posterior 7(0).
» There exists a t, < oo (length of the burn-in period), such

that
0: ~7(0), fort>tp, (6)

i.e., the marginal pdf of 8; is the posterior.
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KERNEL OF A MCMC ALGORITHM

» An MCMC method is completely defined by the probability to
obtain a new state 6; given the previous one, 6;_1.

» The corresponding conditional density K(0:|0;_1) is usually
called kernel.

» K(60:0:—1) summarizes all the steps of the MCMC algorithm.
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INVARIANT /STATIONARY DISTRIBUTION

» Definition of invariant-stationary pdf ps( x;):

/ K(0:l0:—1)ps(0c_1)d0cr = ps(0:).  (7)
)
» MCMC method: design K(6:|60:_1) in order to have

ps(8) = 7(8). 8)
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EIGENFUNCTIONS

» This problem is related to the search of eigenvalues and
eigenfunctions in the equation

/@ K(0:10:-1)0(0;1)d0e_1 = u(6;) 9)

where p is an eigenvalue and ¢(-) is an eigenfunction
(corresponding to p).
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BALANCE CONDITION

» Use the definition of invariance is difficult, in general.

» The balance condition
K(0:|0:—1)T(0:—1) = K(0:-1|0:)7(6:), (10)

is a sufficient condition to prove the invariance.

> If a density satisfies the balance condition, then is invariant
w.r.t. the kernel K(6¢0;-1).

» |n this case, the chain is reversible.
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METROPOLIS-HASTINGS (MH) ALGORITHM

» Recall 7(0) x 7(0).
» Proposal pdf: q(0]0:_1).

MH algorithm:

- Choose 6.
-Fort=1,...,T:

1. Draw 0’ from q(6]0;_1).

2. Set 8; = 0’ with probability

m(0')q(6:-1|6")
77(9t—1)Q(9/‘0t—1) .

a=min |1

Otherwise, set §; = 0;_1 (with probability 1 — ).
- Output: {01, 0, ... 07’}.
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EFFECTIVE SAMPLE S1ZE (ESS) ror MCMC

» The samples are (positive) correlated.

» Due to the ergodicity:

I = 72 f(0:) ~ |. (12)

(recall that we should consider only t > tp)
> Effective Sample Size (ESS):

var [TT} T

Ter=T - & ,
) var{ IT] 142305 px

(13)

where px = var[f(6:)] '
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IMPROVE PERFORMANCE

To reduce the correlation, speed up the convergence:
» MCMC with and adaptive proposal density

» Adding gradient information to the proposal pdf -
Hamiltonian Monte Carlo

» Design more efficient algorithms: Multiple Try Metropolis
(MTM)

» In high dimension, work component by component - Gibbs
sampling

» Design non-reversible MCMC methods.
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MurtipLE TRy METROPOLIS (MTM)

MH

0’ 0;_

MTM

o) (2

o)

! 1 !
Approximation
Generation o(H) 7(0) Resampling Acceptance Test
q . [’)
..... 0N ~ ¢(6) —> L5l 09 ~706) | a(6,.1,09) —>

eN-1)
®
I" I o
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» Importance Sampling (1S)

- V. Elvira, L. Martino, D. Luengo, M. F. Bugallo, " Generalized Multiple Importance
Sampling”, Statistical Science, Volume 34, Number 1, Pages 129-155, 2019.
- L. Martino, V. Elvira, F. Louzada, " Effective Sample Size for Importance Sampling

Based on Discrepancy Measures”, Signal Processing, Volume 131, Pages: 386-401,
2017
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IMPORTANCE SAMPLING (IS)

» Consider the following equality:
IzEﬂﬂ®]==(/ (8)7(6)de,

= /f ) (6)de,

oo

- gammmw]

where w(0) = %.

» Importance Sampling: apply the standard MC procedure
for approximating E4[f(0)w(68)] (when Z is known).
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IS ESTIMATORS (WITH UNKNOWN Z)
1. Sampling: N samples from the proposal q(8)
0, ~ q(0), n=1,...,N.

2. Weighting: Each sample is “corrected” by the importance

weight
(7]
W,-,:Tr( n)7 n=1,...N
q(05)
3. Estimators:
N N 1 N
Iv=> Waf(6,), Z= o > wa,
n=1 n=1
where
B Wn W
n
le'vzl wi  NZ
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EXAMPLE - IS

—Target pdf
«=+Proposal pdf
— Weighted samples
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PROPER WEIGHTING

v

Is the previous weighting scheme unique? No.
Consider an extended proposal pdf ge(8, w) = q(w|0)q(0).
Properly weighted samples with respect to 7:

Eq.[W(0) £(0)] = cE[ f(O)], (14)

where ¢ > 0 is a constant value.
Different possible weighting schemes.

Easy to see when different proposal densities are used jointly.
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MULTIPLE IMPORTANCE SAMPLING (MIS)

Consider N proposal densities, g1(0), ...., gn(0).
» Sampling: 6, ~ g,(0) with n=1,..., N.
» Classical Weighting (CW):

7(6n)
n ) - ]., . N.
q(6n)
» Deterministic Mixture (DM) Weighting:
6n
PRI C) B T

% Zivzl qk(6n)
» The DM-IS estimators have lower variance than the CW-IS

estimators (but more costly; a bit).

» There are even more possibilities: for instance, the partial DM
weights.
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ADAPTATION AND MIS

Iterations (Time)

» Trade-off: complexity - performance

@a(x) | | @e(x) q1,7(x)
BT [ 009 [ | 400 || ()
A : :

g ava(®) | | ana(®) N (X)
g I X
8\! ¢t(x) ¢( )
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» Particle Filtering

- L. Martino, J. Read, V. Elvira, F. Louzada, " Cooperative Parallel Particle Filters for
on-Line Model Selection and Applications to Urban Mobility” Digital Signal
Processing Volume 60, Pages: 172-185, 2017.
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PARTICLE FILTERING

» Particle Filtering = Sequential Importance Sampling +
Resampling

» In signal processing, mainly used in state-space models.

86 /92



STATE-SPACE MODELS

» t ¢ N : discrete iteration index,
> x; € R% : state variable that we want to infer,

> y, € R% : observation at time t,

x¢ ~ p( x| xc-1), ( propagation), (15)
y, ~ Uy, x), (likelihood). (16)
L(yelxe)
P(Xt|xt—1)

v

& g\ "
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RELATIONSHIPS WITH OTHER METHODS

X; — continuous x; — discrete

p, £ — both Gaussian l
Hidden Markov Models (HMMs)

Kalman

X; — continuous
p, £ — generic

Particle Filtering

88 /92



STATE-SPACE MODELS WITH UNKNOWN PARAMETER

x¢ ~ p( x¢| x¢—1,Ap), ( propagation), (17)
Ye o~ LYl xes A0), ( likelihood). (18)

We can also select the best state-space model within a set of
possible models.
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COOPERATIVE PARALLEL PARTICLE FILTERS

‘%}’t\k
PF-1 PF-2 PF-K|
M, 4 M 4 M ¢
Ml M2 PO MK
il,tvz\l,t i?,tvz\?,t iK,tvz\K,t

}

It7 {ﬁk,t}kK:1
if ESS < eN

My t+1 = | Nprt |
number of particles of the k-th filter

t<=t+1

We also adapt the number of particles in each filter (but the sum

of all particles is fixed)
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COOPERATIVE PARALLEL PARTICLE FILTERS

5

—true state

- - esti state
0

100 200 300 400 500

0 500 1000 1500
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» Thank you very much!
» Any questions?
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